
Supporting Peripherals in Intermittent Systems with
Just-In-Time Checkpoints

Kiwan Maeng
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, USA

kmaeng@andrew.cmu.edu

Brandon Lucia
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, USA

blucia@andrew.cmu.edu

Abstract
Batteryless energy-harvesting devices have the potential to
be the foundation of applications for which batteries are
infeasible. Just-In-Time checkpointing supports intermittent
execution on energy-harvesting devices by checkpointing
processor state right before a power failure. While effective
for software execution, Just-In-Time checkpointing remains
vulnerable to unrecoverable failures involving peripherals
(e.g., sensors and accelerators) because checkpointing during
a peripheral operation may lead to inconsistency between
peripheral and program state. Additionally, a peripheral op-
eration that uses more energy than a device can buffer never
completes, causing non-termination.

This paper presents Samoyed, a Just-In-Time checkpoint-
ing system that safely supports peripherals. Samoyed cor-
rectly runs user-annotated peripheral functions by selec-
tively disabling checkpoints and undo-logging. Samoyed
guarantees progress by energy profiling, dynamic peripheral
workload scaling, and a user-provided software fallback rou-
tine. Our evaluation shows that Samoyed correctly executes
peripheral operations that fail with existing systems, achiev-
ing up to 122.9x speedup by using accelerators. Samoyed
preserves the performance benefit of Just-In-Time check-
pointing, showing 4.11x mean speedup compared to a recent
possible alternative. Moreover, Samoyed’s unique ability to
profile energy and to dynamically scale large peripheral op-
erations simplifies programming.

CCS Concepts • Computer systems organization →
Embedded software; Sensor networks;

Keywords intermittent computing, energy-harvesting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314613

ACM Reference Format:
Kiwan Maeng and Brandon Lucia. 2019. Supporting Peripherals in
Intermittent Systems with Just-In-Time Checkpoints. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix,
AZ, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3314221.3314613

1 Introduction
The combination of low-power microcontrollers and energy-
harvesting power systems enable sophisticated batteryless
devices. Such energy-harvesting devices collect energy from
their environment, charging an energy buffer and operat-
ing for a short window using the buffered energy. Because
these devices do not need a battery to operate, they can be
deployed on an environment where replacing the battery
is often infeasible, such as environmental monitoring [34],
in-body sensing, or sensing in outer space [71]. While op-
erating, the device computes and manipulates peripherals
such as sensors, radios, and specialized architectural accel-
erators [17, 56]. When the buffer is depleted, power fails,
erasing volatile state (e.g., registers and SRAM) but preserv-
ing non-volatile state (e.g., FRAM or Flash). The device then
recharges until accumulating sufficient energy when it re-
boots and continues operating. Software executes intermit-
tently, only when energy is available [15, 30, 40, 44, 65].
Prior work enables correct intermittent execution with

system support. Checkpointing systems [6, 32, 40, 45, 54, 65]
save the volatile state of the device to non-volatile memory,
or checkpoint, before the state gets erased by a power fail-
ure. On reboot, the checkpointed state is restored, resuming
execution from the checkpointed program point. Static check-
pointing systems rely on the compiler [4, 16, 45, 46, 54, 65] or
the programmer [15, 40, 44] to decide where to checkpoint in
code. Static checkpointing allows precise control over where
to checkpoint, which helps avoid checkpointing during sen-
sitive peripheral accesses that should not be interrupted by
a checkpoint. However, these systems require accurate pre-
diction of the energy consumption of code. Poorly placed
checkpoints cause non-termination if they are too rare and
a performance cost if they are too frequent [16, 45].

Just-In-Time (JIT) checkpointing systems [5, 6, 32, 33], on
the other hand, monitor the device’s remaining energy and

https://doi.org/10.1145/3314221.3314613
https://doi.org/10.1145/3314221.3314613
https://doi.org/10.1145/3314221.3314613

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kiwan Maeng and Brandon Lucia

take a checkpoint only once before a power failure is im-
minent. JIT checkpointing avoids the checkpoint frequency
problem of static solutions, provides a performance advan-
tage, and can simplify programming [6, 32] (claims we em-
pirically validate in Section 2.3).
Despite their benefits, prior JIT checkpointing systems

have limitations that render them incompatible with periph-
eral devices, such as sensors, radios, and architectural ac-
celerators [55] (i.e., “peripherals”). Peripheral devices for
sensing and communicating are extremely common in em-
bedded sensor systems, and intermittent systems must safely
support these peripherals. Computation accelerators [10, 25]
are growing increasingly important, as applications offload
more computation (such as machine learning inference) to
the edge and beyond [23].
A key design requirement for JIT checkpointing is that

the system must be able to checkpoint at any moment as
power fails. This design requirement conflicts with the need
for a peripheral operation to complete without interruption
by a checkpoint once started. Section 2.4 characterizes this
conflict, showing that existing JIT checkpointing systems
suffer unrecoverable failures when using peripherals. More-
over, when a peripheral operation requires more energy
than the device can buffer (making an application infeasi-
ble), no existing system supports safely decomposing the
operation into smaller, feasible operations. Due to the limita-
tions, many previous systems instead focus on an alternate
non-JIT checkpointing design that allows safe use of periph-
erals [15, 30, 40, 44, 45], sacrificing performance.

This work introduces Samoyed, 1 the first JIT checkpoint-
ing system to correctly and efficiently support multiple dif-
ferent types of peripheral operations in an intermittent exe-
cution on an energy-harvesting device. Samoyed provides
programmers with a peripheral atomic function primitive, the
implementation of which supports uninterruptable periph-
eral operations that are safely compatible with JIT check-
points. Samoyed statically profiles peripheral operation en-
ergy to estimate the viability of the peripheral. Samoyed
can then dynamically decompose a long-running peripheral
operation into multiple smaller operations, or fall back to a
simpler, alternative implementation if energy is insufficient.

We prototyped Samoyed for a modern energy-harvesting
hardware platform [17]. The prototype includes a compiler,
runtime library and energy profiler that together provide
Samoyed’s JIT checkpointing and atomic function primitives.
We evaluated Samoyed to show that it enables safe peripheral
operations, while prior systems fail. Samoyed permits the
safe use of computation accelerators, which provide a 10.78x
average speedup in computation-heavy microbenchmarks.
Samoyed is 4.11x faster on average than a prior, non-JIT
checkpointing alternative. Our main contributions are:

1Safe Atomic Manipulation Of Your External Devices

• A characterization of peripheral operations that are prob-
lematic with JIT checkpoints.

• A JIT checkpointing system that provides safe access to a
wide variety of peripherals.

• Amechanism that dynamically scales peripheral operation
cost to match energy availability.

• A static energy profiler for estimating the viability of pe-
ripherals before deployment.

• An evaluation comparing to prior work and showing that
Samoyed provides safe peripheral operation where prior
JIT systems fail, with a 4.11x speedup over non-JIT alter-
natives.

2 Background and Motivation
Improvements in the efficiency of computer systems and
the maturation of energy-harvesting have led to the viabil-
ity of batteryless computing devices built from commodity
components. Intermittent energy availability complicates
the development and execution of software targeting these
devices. Managing the manipulation of hardware peripheral
devices adds additional complexity, much of which has not
been addressed by prior work on intermittent computing.

2.1 Energy-Harvesting Devices
A typical energy-harvesting device consists of an energy
harvester, an energy buffering capacitor, a microcontroller
(MCU), volatile and non-volatile memory, and peripheral de-
vices such as sensors, architectural accelerators for specific
computations, and radios [17, 39, 56, 72]. A device collects
energy from, e.g., radio waves, light, or vibration, storing the
energy in its energy buffer. When sufficient energy accumu-
lates, the device operates, quickly draining its stored energy.
On depletion, the device turns off and begins charging. Har-
vested power sources are often too weak to continuously
power the device, which instead operates intermittently, re-
booting frequently [17, 56, 72]. The frequency of reboots
depends on the environment and the power consumption
of the device and consecutive reboots may be separated by
seconds or milliseconds. On each power failure, the device
loses volatile state (registers, volatile memory, and peripheral
state) and preserves non-volatile state (FRAM and Flash).

2.2 Just-In-Time Checkpointing
A Just-In-Time checkpointing system monitors a device’s
energy buffer and stores a checkpoint of volatile state in
non-volatile memory immediately before a power failure. Af-
ter checkpointing, the device sleeps [5, 6] or spin-waits [32]
awaiting more energy, during which time its power may fail.
When there is again sufficient energy, the device reboots,
restores the checkpoint and continues from where it left off.
Figure 1 shows code that encrypts a string str by copying
it into pText and calling AES_SW, a software AES encryp-
tion routine, to produce ciphertext, cText. The execution

Supporting Peripherals in Intermittent Systems with JIT Checkpoints PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

main:
 ...
 str=get_data()
 pText=str
 cText=AES_SW(pText)
 str=cText
 send_data(str)
 ...

 str=get_data()
 pText=str

 cText=AES_SW(pText)
 str=cText

 send_data(str)
 ...

Reboot

!

Checkpoint
Software AES Code Successful Execution

Energy buffer state

!

Figure 1. Execution of JIT checkpointing system. The
code stores data in str, copies str into pText, encrypts
pText into cText, copies cText back into str, and transmits
(left). An example execution trace is shown (right).

depletes the energy buffer forcing the device to checkpoint
and continue later after a reboot.

An important correctness property of a JIT checkpointing
system is that the execution stops after the checkpoint. A JIT
checkpointing system eliminates the need to undo- or redo-
log updates to non-volatile memory by not executing instruc-
tions that may manipulate non-volatile memory after check-
pointing. In contrast, a system that collects a checkpoint and
continues to execute may update non-volatile memory after
the checkpoint and before a power failure. Consequently,
such a system must manage non-volatile memory to ensure
consistency with the checkpointed program state.

A JIT checkpointing system must monitor device energy,
typically with a hardware voltage comparator on the energy
storage capacitor [5–7, 32]. Assuming that main memory
is non-volatile, which is consistent with common system
designs [31, 32, 56, 61, 65], a JIT checkpointing need only
contain register state, not stack or heap data. The size of a
register-only checkpoint is fixed. Non-volatile main memory
remains consistent with the checkpoint as long as execu-
tion pauses immediately after checkpointing. With small,
fixed-size checkpoints, setting a JIT checkpointing system’s
voltage threshold is simple [32], and checkpointing has low
overhead [32, 65]. Implementing JIT checkpointing check-
pointing in a modern platform need not impose a high en-
ergy overhead. Using an on-chip comparator present in some
microprocessors [61] results in only around 1%-7% energy
increase in the microprocessor energy use (Section 4). Com-
pared to the energy consumption of the entire board, the
overhead is much lower.

2.3 The Performance Benefit of JIT Checkpointing
JIT checkpointing systems have several benefits compared
to alternative approaches. First, a JIT checkpointing system
checkpoints only once, immediately before a power failure,
leading to low checkpointing overhead. Systems that op-
erate oblivious to remaining energy may collect multiple
checkpoints between power failures [15, 40, 44, 65], which is

O0 O1 O0 O1 O0 O1 O0 O1 O0 O1 O0 O1
(Opt lvl.)

0.0

0.5

1.0

1.5

Ru
n

tim
e

(n
or

m
. b

y
Al

pa
ca

)

Cras
h

Cras
h

Cras
h

Cras
h

QuickRecall
Alpaca

CEM CF RSA AR BF BC

Figure 2. Performance benefit of JIT checkpointing.
The plot shows data for optimization levels -O0 and -O1.

an unnecessary overhead. Second, a JIT checkpointing sys-
tem need not use memory logging to maintain non-volatile
memory consistency. In contrast, many alternative systems
require memory logging for correctness incurring additional
runtime overhead [4, 15, 40, 44, 45]. Third, a JIT checkpoint-
ing system can run mostly unmodified C code, while many
alternative software approaches change the programming
model [15, 30, 44]. Supporting mostly unmodified C code
not only increases programmability but also has a possible
performance benefit due to its compatibility with modern
compiler optimizations.
Figure 2 emphasizes the performance benefit of a JIT

checkpointing by comparing the execution time of Quick-
Recall [32], a JIT checkpointing system, with Alpaca [44], a
state-of-the-art, non-JIT checkpointing system. We ran six
benchmarks from the Alpaca paper [44]. We used the re-
leased code for Alpaca and implemented QuickRecall based
on the author’s description. CEM reads a temperature sen-
sor and LZW-compresses it. CF stores and retrieves pseudo-
random inputs in a cuckoo filter. RSA encrypts a string
using RSA with a 64-bit key. AR reads an accelerometer and
detects movement with a nearest-neighbor classifier. BF en-
crypts a string using Blowfish. BC counts set bits in an input
stream. We ran each experiment on two different compiler
optimization levels.

The result shows that a JIT checkpointing system, Quick-
Recall, is much faster than a non-JIT checkpointing system,
Alpaca, in many computation-heavy benchmarks (CF, RSA,
BF, BC). The speedup of QuickRecall indicates a large po-
tential performance benefit in using a JIT checkpointing.
However, the result also shows that a JIT checkpointing sys-
tem sometimes fails (bars marked “crash”) when executing a
peripheral operation such as a temperature sensor reading
(CEM) or an accelerometer reading (AR).

2.4 The Peripheral Problem for JIT Checkpoints
JIT checkpointing systems may fail in the presence of pe-
ripheral operations (i.e., Figure 2), which is an impediment
to their adoption. Failures stem from the widespread assump-
tion in JIT checkpointing systems that only register file state

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kiwan Maeng and Brandon Lucia

main:
 ...
 str=get_data()
 AES_IN=str
 AES_HW()
 while(!AES_DONE)
 str=AES_OUT
 send_data(str)
 ...

Problem 2.

 str=get_data()
 AES_IN=str

 AES_HW()
 while(!AES_DONE)
 while(!AES_DONE)

!

Hardware AES Code Incorrect Execution

AES done flag

AES HW input
(volatile)

AES HW result
(volatile)

 while(!AES_DONE)
 while(!AES_DONE)
 ...

Power failure
resets AES_IN

Problem 1.

!

HW is not
running

Wrong value
used

1

2

Power failure
kills the HW

2

1

Figure 3. Incorrect peripheral execution. The code uses
AES hardware, copying str into AES SRAM, AES_IN, com-
puting, spin-waiting as AES runs, and copying results from
AES SRAM, AES_OUT. The problematic execution at right
clears the AES SRAM and leaves the module de-configured.

clears on power failure. However, a real system also loses
peripheral state: sensor and radio configurations, intermedi-
ate result buffers in architectural accelerators, and state in
the external environment. This paper focuses on blocking,
request-and-response style peripherals: the MCU configures
and activates a peripheral, later awaiting its response while
halted, asleep, or spin-waiting. Arbitrary parallel execution
and interrupt-driven concurrency are out of scope.

Figure 3 shows how a JIT checkpointing system like Quick-
Recall [32] behaves incorrectly due to peripherals. The ex-
ample uses a hardware AES encryption module. The module
requires software to populate a volatile input buffer (AES_IN),
run AES (AES_HW()), wait for completion (AES_DONE), and
collect output from a volatile buffer (AES_OUT).

Incorrect results. Unconstrained JIT checkpointing causes
the program in Figure 3 to misbehave. Assume the system
checkpoints after populating AES_IN. On reboot, the code
activates the AESmodule with the volatile AES_IN buffer that
was cleared by the power failure. The activation produces
incorrect output.

Infinite wait. Simply making the AES module’s memory
non-volatile does not fix the problem. Assuming the module
has non-volatile input and output buffers (existing modules
do not), the code is still broken. If the system checkpoints
while spin-waiting for AES to finish and then power fails,
the loop never breaks because the deconfigured AES module
never sets AES_DONE. The code spin-waits indefinitely.

Timeliness and signal consistency. Figure 4 illustrates an-
other limitation of JIT checkpointing. The code samples an
audio signal every 10 ms and computes its fast Fourier trans-
form (FFT). The signal is rendered meaningless if the system
checkpoints while sampling and power fails (i.e., the execu-
tion at right). Two samples that are consecutive in memory,
such as a[1] and a[2], should be separated by 10 millisec-
onds, butmay be separated by the arbitrary duration required
for the device to recharge. With such non-regular sample pe-
riods, the FFT result becomes meaningless. There is no way

main:
 ...
 n=0
 while(n < 3):
 a[n++]=read_mic()
 sleep(10ms)
 result=FFT(a)
 ...

 n=0
 a[0]=read_mic()
 sleep(10ms)
 a[1]=read_mic()

 sleep(10ms)
 a[2]=read_mic()
 sleep(10ms)
 result=FFT(a)

Audio FFT Code Incorrect Execution
n=0

Correct Execution

a[0]=read_mic()
sleep(10ms)
a[1]=read_mic()
sleep(10ms)
a[2]=read_mic()

sleep(10ms)
result=FFT(a)

Arbitrary time interval

Figure 4. Inconsistent signal sampling. The code sam-
ples an audio signal and performs FFT. Themiddle is a correct
execution and the right is a problematic one. A checkpoint
and restart during sampling adds an arbitrary recharge time
between some samples, rendering the FFT meaningless.

for existing JIT checkpointing systems to express this signal
consistency condition because the code cannot distinguish
between a buffer of coincidentally contiguous samples and a
buffer of samples with inconsistent periods.

2.5 How Do Real Peripheral Accesses Fail?
We studied peripheral failures running microbenchmarks on
Capybara [17], powered by radio waves (setup details are
in Section 5.1), using on-board and on-chip peripherals. We
implemented QuickRecall [32] as faithfully as possible based
on the paper to show how JIT checkpointing systems do not
handle peripherals. We have 15 tests in five categories.
Basic: Sleep waits on a hardware timer for 15ms.
Sensors: Temp 5, Light 5, andMic 5 read an on-chip tempera-
ture sensor, on-board light sensor, and on-board microphone,
averaging five samples.
Hardware Accelerators: DMA uses on-chip Direct Mem-
ory Access (DMA) to copy memory. AES encrypts data with
an on-chip AES accelerator. LEA vadd adds vectors with the
on-chip TI LEA [64] DSP accelerator. LEA matmult multi-
plies matrices using LEA. LEA FFT does FFT with LEA. LEA
conv low-pass filters data using convolution on LEA.
Communication: PRINTF prints data over USB using a
hardware UART. BLE TX transmits Bluetooth Low-Energy
(BLE) packets, using a BLE controller.
Mixed: Temp BLE, Light BLE, and Mic BLE transmit on BLE
when the value read from a sensor exceeds a threshold.

Table 1 summarizes the failure behaviors we observed. An
infinite wait happens when the system checkpoints while
waiting for a peripheral operation to complete (e.g., Figure 3).
An incorrect result happens when peripheral state — often
managed through memory-mapped I/O registers (MMIO)
— is volatile and erased on reboot. A timeliness violation
happens when data must be collected or used adherent to a
timing condition (like signal consistency).
Table 1 shows that many operations, including simple,

common operations like sleep, fail with JIT checkpoints. The
problem with existing JIT checkpointing is dire: spin-wait,

Supporting Peripherals in Intermittent Systems with JIT Checkpoints PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

sleep, and MMIOmanipulations all fail, precluding the use of
crucially important serial protocols such as UART, I2C, and
SPI that support thousands of sensors, radios, and peripheral
devices. This study evaluates our implementation of Quick-
Recall [32], but the results apply generally across JIT check-
pointing and timer-based checkpointing systems [5, 6, 65]
that may checkpoint at any program point.

Table 1. Observed failures for QuickRecall [32]. X indi-
cates corresponding failure was observed.

category app name infinite wait incorrect result timeliness
violation

Basic Sleep X

Sensor
Temp 5 X X X
Light 5 X X X
Mic 5 X X X

HW
Accel.

DMA X X
AES X X
LEA vadd X X
LEA matmult X X
LEA FFT X X
LEA conv X X

Comm. PRINTF X
BLE TX X X

Mixed
Temp BLE X X X
Light BLE X X X
Mic BLE X X X

2.5.1 Why Not Just Disable Checkpoints?
JIT checkpointing failures happen when the system check-
points at an inopportune moment; why not disable check-
points during inopportune moments? Simply temporarily
disabling checkpoints is insufficient to solve the peripheral
problem for a JIT checkpointing system. There are two rea-
sons: (i) write-after-read (WAR) dependences complicate
memory consistency when power fails while checkpoints
are disabled and non-volatile memory updates re-execute;
and (ii) a limited-capacity energy buffer requires at least one
checkpoint per execution period to avoid non-termination.

Memory consistency and WAR dependences Disabling
JIT checkpoints during a region of code may compromise
non-volatile memory consistency. If power fails with JIT
checkpoints disabled, the system is forced to restore the last
successful checkpoint. Control flow reverts to a previous
point, but updates to non-volatile memory remain because
non-volatile memory updates are not logged with the JIT
checkpoint. On re-execution, the system may read such an
updated non-volatile memory location, consuming an incor-
rect value. Existing JIT checkpointing systems thus strongly
assume that execution stops after a checkpoint and control
never flows backward on reboot. Temporarily disabling JIT
checkpointing invalidates this key assumption and can lead
to the invalid memory state.
The presence of peripheral accesses in code requires a

JIT checkpointing system to ensure non-volatile memory
consistency. Prior work [15, 31, 40, 44, 45, 65] observed that
re-execution can leave non-volatile memory inconsistent.

A re-executed code region leaves memory inconsistent if it
contains a read followed by a write to the same non-volatile
memory location (i.e., a WAR dependence), without a pre-
ceding write to the location. While previous JIT checkpoint-
ing avoids this WAR dependence problem by avoiding re-
execution, peripheral accesses require re-execution, reintro-
ducing the risk of memory inconsistency due to a re-executed
WAR dependence.

Figure 5 shows how disabling JIT checkpoints renders
the use of a hardware AES module incorrect. Checkpoints
are disabled in the yellow region, preventing JIT check-
pointing. On reboot, the system resumes at the most re-
cently collected checkpoint, which is at the beginning of
the yellow region, and re-executes the yellow region. Re-
execution is problematic because the yellow region contains
awrite (str<-AES_OUT) after a read (AES_IN<-str) for a non-
volatile memory location str, i.e., a WAR dependence. The
execution re-encrypts the partially encrypted str, resulting
in an incorrect str.

main:
 ...
 str=get_data()
 AES_IN=str
 AES_HW()
 while(!AES_DONE)
 str=AES_OUT
 send_data(str)
 ... Checkpoint disabled

Checkpoint Disabled Incorrect Execution
AES_IN=str
AES_HW()
while(!AES_DONE)
str=AES_OUT!

Problem 1.

Cannot collect
any checkpoint

Problem 2.

str partially
updated

1

updated str
reused

2

AES_IN=str
AES_HW()
while(!AES_DONE)
str=AES_OUT!

Figure 5. Incorrect execution with checkpoints dis-
abled. AES code from Figure 3 with checkpoints partially
disabled in the yellow region of the code (left). With JIT
checkpoints disabled, part of the code re-executes on reboot,
using a partially updated str again as an input. Moreover,
the code cannot complete, leading to non-termination (right).

Non-termination Disabling JIT checkpoints during pe-
ripheral accesses can lead to non-termination if the energy
required to operate for the duration of the peripheral access
exceeds the total amount of energy that the device can buffer.
In such a case, the region in which checkpoints are disabled
will repeatedly attempt to execute, but will never complete.

Figure 5 also shows how disabling JIT checkpoints can
lead to non-termination. In the figure, the yellow region is
too long to execute using the device’s buffered energy. The
program repeats this partial execution indefinitely.
Addressing this non-termination problem is a challenge

because the duration of the peripheral access can be highly
workload- and input-dependent. For example, the AES mod-
ule consumes different time and energy for different input
strings and encryption key sizes, which can vary dynami-
cally, and for different environmental conditions (e.g., tem-
perature), which are outside of the system’s control. Asking
the programmer to re-write code to ensure termination re-
quires reasoning about possible input sizes, per-operation

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kiwan Maeng and Brandon Lucia

Atomic Function Definition

DMA:N DMA:N/2 DMA:N/2

checkpoint

no checkpoint

workload
scaling

Execution
attempts

DMA:1024

Execution

DMA:1024

DMA:512 DMA:512

DMA:256 DMA:256 DMA:256 DMA:256

atomic<N:1> DMA(...){
 code
 scaling rule
 fallback
}

Energy Profiling

Executable

Compile

SAFE!!

Figure 6. Overview of Samoyed. The figure shows an
atomic function for manipulating a hardware direct memory
access (DMA) module. After compilation and energy profil-
ing, the code executes. Samoyed uses the atomic function’s
scaling rule to decrease the size of DMA inputs until the
execution completes successfully.

energy cost, and operating conditions, which is extremely
difficult. Precisely reasoning about the energy use of arbi-
trary code is a complicated, unsolved problem [12, 16, 38].

Existing JIT checkpointing systems fail to execute common
peripheral operations correctly or efficiently, making them
impractical despite their benefit in performance and pro-
grammability. In this work, Samoyed supports peripheral
operations safely and efficiently on a JIT checkpointing sys-
tem, making them viable for real-world deployment.

3 Safe Peripheral Operations with
Samoyed

Motivated by the limitations of JIT checkpointing that we
identified in Section 2.4, we propose a new JIT checkpoint-
ing system called Samoyed that supports safe and efficient
peripheral operations, free of these limitations.

Samoyed allows the programmer to define an atomic func-
tion, inside which the system selectively captures check-
points andmaintainsmemory consistencywith undo-logging.
If the work in an atomic function requires more energy than
a device can provide, Samoyed dynamically scales the atomic
work by iteratively sub-dividing the function into multiple
smaller function invocations, each containing a subsequence
of the original function’s work. Samoyed additionally pro-
vides an energy profiler to ensure that at least the maximally
sub-divided atomic function (i.e., minimum work) can run
on a given platform, with a fallback routine to handle the
profiling error.

Figure 6 summarizes Samoyed’s operation. The program-
mer defines an atomic function containing peripheral op-
erations, optionally providing a scaling rule and a fallback.
Samoyed compiles the atomic function and runs the binary
through the profiler, which estimates the energy consump-
tion of each atomic function for a given device. The profiler
determines whether the smallest sub-division of the atomic
function will execute to completion, given the device’s total
available energy. If the profiler determines that the atomic
function does not exceed the energy budget, Samoyed deems
it safe and runs it, applying the scaling rule dynamically to
adapt to energy availability as needed. If the profiled atomic
function exceeds the device’s energy budget, the programmer
must change the platform or the peripheral. Profiling is im-
perfect and may underestimate an atomic function’s energy
cost. To handle profiling error, Samoyed allows a software
fallback that executes if the smallest possible sub-division
of an atomic function exceeds the device’s energy budget
on deployment. Unlike the atomic peripheral operation, the
fallback safely spans failures. Samoyed’s atomic function
facility, compiler, profiler, and runtime system support safe,
efficient peripheral access alongside the performance and
programmability benefits of JIT checkpointing.

3.1 Baseline JIT Checkpointing System
Samoyed assumes an underlying JIT checkpointing system
with fully non-volatile memory, as in prior work [32, 45, 65].
We assume the system can measure the device’s remaining
energy and interrupt the MCU when buffered energy hits a
lower threshold (as in [5, 6, 32]). The system stops executing
after checkpointing, restarting when the energy buffer is
again refilled. We only target peripherals that do not have
internal non-volatile state and are arbitrarily restartable after
a power failure. Although restricted, many peripherals used
in the embedded domain fall into this category, including
all peripherals that we studied (Table 1). Samoyed is appli-
cable only to blocking peripheral operations during which
the MCU waits; Samoyed does not support concurrency of
computation and peripheral accesses. While not inclusive of
all code that manipulates peripherals, low-power embedded
systems and peripheral computation accelerators frequently
rely on a blocking interface. Samoyed is relevant to an im-
portant class of intermittent systems code.

3.2 Samoyed Atomic Functions
An atomic function contains code that should execute with-
out checkpoints, permitting safe peripheral accesses.

3.2.1 Syntax
Table 2 summarizes the syntax of an atomic function.
atomic<$knob:$val,...> declares a function as atomic. An
atomic function has no return type because Samoyed re-
quires passing outputs via output parameters. A programmer
declares knob variables inside angle brackets (<>), which are

Supporting Peripherals in Intermittent Systems with JIT Checkpoints PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 2. Summary of atomic function syntax.

syntax meaning
atomic<$knob:$val, ...> define atomic functions with their knob variable
input[] define a parameter as an input with its size
output[] define a parameter as an output with its size
inout[] define a parameter as both input and output
scaling rule{} provide a scaling rule (if needed)
fallback{} provide a fallback routine (if needed)

parameters Samoyed can vary to change the amount of work
in an atomic function. Samoyed permits an optional knob
minimum after the colon (:), defaulting to one.
The input, output, and inout parameter qualifiers declare
that an atomic function’s parameter is used for input, out-
put, or both. An array parameter requires an additional size
argument in a square brace (e.g., input[size]).
A scaling rule defines an atomic function’s scaling rule,
which tells Samoyed how to recursively decompose an atomic
function that consumes too much energy into a sequence
of smaller function invocations, the sequential execution of
which is equivalent to the original function’s execution.
A fallback is a software-only routine associated with an
atomic function that Samoyed runs if recursive decomposi-
tion fails to produce a terminating execution. For a compute
accelerator, the most common fallback is a software-only
(i.e., without peripherals) implementation that can run inter-
mittently, tolerating arbitrarily-timed JIT checkpoints.
Samoyed treats knob variables, the scaling rule, and the

software fallback as optional. An atomic function should
not access any non-volatile global memory directly without
specifying it as an input, output, or inout.

3.2.2 How to Write an Atomic Function
This section shows how to write an atomic function, using a
hardware AES encryption accelerator as a running example.
Figure 7 shows the original atomic function definition (left)
and the simplified code transformed by Samoyed’s compiler
(right). The programmer annotates the function as atomic
and marks its inout array parameter (Line 1). The function
has a knob variable (N) with a minimum size of 16 (Line 1),
which is the minimum allowed by the algorithm. The pro-
grammer then implements the peripheral control code (Line
2-5), the function’s scaling rule (Line 7-9), and the software
fallback (Line 11). In the example, the scaling rule is express-
ing that two consecutive AES invocations each operating
on a distinct half of the original string are equivalent to the
original AES invocation for this program. Expressing a re-
cursive scaling rule is similar to writing a recursive function.
The programmer should make sure that applying the scaling
rule does not affect the correctness (e.g., Line 7-9 may not
work with a different encryption algorithm).

1 atomic<N:16> AES(
 inout[N] char* str,
 int N){
2 memcpy(AES_IN,str,N);
3 AES_RUN_HW(N);
4 while(!AES_DONE);
5 memcpy(str,AES_OUT,N);
6 scaling rule{
7 N = N/2;
8 AES(str,N);
9 AES(str+N,N)}
10 fallback{
11 sw_AES(str,N)}}

1 int maxN = MAX_INT;
2 void AES(char* str,int N){
3 bool needScale;
4 if(N<=maxN) uLog(str,N);
5 disableChkpt();
6 collectChkpt();
7 if(N<=maxN && !np){
8 memcpy(AES_IN,str,N);
9 AES_RUN_HW(N);
10 while(!AES_DONE);
11 memcpy(str,AES_OUT,N);
12 if(needUpdate){
13 maxN = N;
14 needUpdate = false;}
15 needScale = false;}
16 else{needScale = true;}
17 enableChkpt();
18 clearULog();
19 if(needScale){
20 N = N/2;
21 AES(str,N);
22 AES(str+N,N);}

original code

scaling rule

Atomic Function Definition Compiler-Generated Code

Try running the workload if
knob is smaller than max
(N<=maxN)
Scale the workload if knob
too large (N>maxN) or no
progress (np=true)

knob>max?

update max

init max

*np: set on no progress, clear on checkpoint
*needUpdate: set on no progress

fallback

Figure 7. An atomic function. The hardware accelerated
AES encryption code (left), and code transformed by the
compiler (right).

3.2.3 How Samoyed Executes an Atomic Function
Samoyed executes compiled atomic function code, automati-
cally invoking the scaling rule and fallback as necessary. The
compiler-transformed code on the right of Figure 7 has two
main parts. The code inside the upper red box (Line 7-16)
contains the atomic function’s main workload, including the
original peripheral operations (gray, Line 8-11) and the state
management code (yellow, Line 7, 12-14). The code in the
lower blue box (Line 19-22) contains the scaling rule.
On entering the atomic function, Samoyed disables au-

tomatic JIT checkpoints (Line 5) and collects a checkpoint
(Line 6), ensuring the atomic function restarts from the be-
ginning when power fails with checkpoint disabled. Then,
Samoyed runs either the atomic function’s main workload
(Line 7-16) or applies its scaling rule (Line 19-22), based on
the prior execution history. The decision is made based on
the two state variables, maxN and np. Each knob (e.g., N) has
a corresponding max knob value (e.g., maxN) that holds the
largest known value of the knob for which the function com-
pleted successfully. np is a flag that Samoyed sets if the most
recent two attempts to execute the main workload made no
progress. np is cleared on a checkpoint. If the knob value is
the same or smaller than the max knob value (N<=maxN) and
the system is not currently stuck (i.e., !np, Line 7), Samoyed
tries running the main workload with checkpointing dis-
abled. Otherwise, Samoyed re-enables checkpointing and
applies the scaling rule, which decreases the knob value.

Running the main workload. If the knob value (N) is less
than or equal to the max knob value (maxN) and np is unset,
the main workload (Line 7-15) executes. Samoyed undo-logs
inout parameters (Line 4) before the main workload only if

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kiwan Maeng and Brandon Lucia

the main workload will execute (i.e., N<=maxN). If power fails
during the main workload, Samoyed rolls back the changes
made to the inout parameters (using its undo-log) and re-
runs the operation from the last checkpoint (Line 6). If the
main workload fails to complete twice, it means the current
knob value is too large; Samoyed indicates that the current
knob value is invalid by setting a needUpdate flag along with
the np flag. On the following reboot with np set, Samoyed
skips the main workload and instead runs the scaling rule
by setting needScale (Line 16). On successful execution,
Samoyed updates the max knob value (Line 12-14) if the
previous value was invalid (i.e., needUpate is set) and exits
the function. Updating the max knob value spares future
executions the attempts and failures to calibrate the knob.
Samoyed clears its undo-log after the peripheral operation
is done (Line 18).

Scaling an atomic function. Samoyed runs the scaling
rule in two cases: (1) after np is set, which indicates a failure
to make progress on two consecutive runs; or (2) when the
knob value is larger than the max value, which indicates
that the current knob value is known to be too large based
on prior executions (Line 7). Samoyed recursively invokes
atomic functions with a decreased knob (Line 19-22) until
each invocation is small enough to be executed on a given
platform. If the scaling rule scales the knob beyond the speci-
fied minimum, the system runs the software fallback instead
of the atomic function, whose code is omitted for brevity.

Concrete example invocation. An invocation of AES with
a 1024-entry array (N=1024) will fail to execute if the system
can only buffer enough energy to perform an AES encryp-
tion on 300 entries (N=300) at most. Initially, maxN is too high,
at MAX_INT (e.g., 32,767 for 16-bit int). Samoyed compares
the knob (1024) to maxN (MAX_INT) at Line 4, and undo-logs
str. Samoyed then checks the np flag, which is unset, and
attempts to execute the peripheral operations (Line 8-11).
The knob value is too large and power fails before the oper-
ation completes. On failure, Samoyed rolls back the partially
updated str. After two failed execution attempts, Samoyed
sets np, indicating a lack of progress, and needUpdate, in-
dicating the current maxN is incorrect. The next execution
enters the else on Line 16 and the if on Line 19, decreasing
N to 512 and recursively calling AES twice, each processing its
half of the input (Line 20-22). N=512 remains too large; after
two more failed attempts, Samoyed scales N to 256, which
is small enough to complete with a given energy budget.
After completing, the runtime updates maxN to 256 (Lines 12-
14), equipping future executions with a viable starting knob
value. This execution successfully hardware-accelerates an
infeasibly large AES encryption call on an input of size 1024
by automatically, dynamically dividing it into four AES en-
cryption calls, each with N=256. The knob converges to an
amount of work possible using a full energy buffer, guaran-
teeing that amount of work even with no incoming energy.

3.2.4 Correctness
Samoyed avoids memory inconsistency. On a power failure
during a peripheral operation, control reverts to the last
checkpoint placed at the start of the atomic function (Line
6). On re-execution, memory may become inconsistent if
the code has a WAR dependence that is not preceded by a
re-initializing write (Section 2.5.1). Samoyed assumes that
function local variables and peripheral-internal state clear
on a restart and are initialized in the function before use,
always having a re-initializing write. This assumption leaves
inout parameters the only variables that can be involved
in a problematic WAR dependence, since they are the only
non-volatile data that may be both written and read in the
atomic function. With all the inout parameters annotated
correctly, Samoyed protects the parameters from becoming
inconsistent with undo-logging (similarly to [4, 45]). Cor-
rectly annotating the inout parameters requires careful pro-
gramming; the burden is, however, reasonable because most
peripherals have well-defined inputs and outputs.

Samoyed also avoids non-termination. Samoyed can scale
an atomic function’s knob value down to a programmer-
specified minimum. If the function can complete with at least
the minimum knob value, Samoyedmakes progress with scal-
ing the knob. Samoyed’s profiler helps determine whether an
atomic function’s minimum knob value is sufficiently small
before deployment (Section 3.3). If the profiler mispredicts
and the atomic function fails to complete even with its mini-
mum knob value on deployment, Samoyed safely executes
the software fallback instead to avoid non-termination. It is
the programmer’s responsibility to correctly define the knob
and the scaling rule. The complexity of writing a recursive
scaling rule is similar to writing a recursive function.

3.2.5 Generality
Samoyed supports sophisticated, multi-knob scaling rules,
asking the programmer to define each knob and to define a
scaling rule that uses reduced knob values. Figure 8 shows a
scaling rule for matrix transpose using the LEA DSP module
on the TI MSP430FR5994 microprocessor [63]. To use the
module, the programmer populates the input buffer, TR_IN,
and the module fills the output buffer, TR_OUT. The example’s
knobs are row and col. The scaling rule bisects the larger
of the input matrix’s row (Line 8-9) or column (Line 11-12)
size. Illustrating Samoyed’s capabilities, we implemented
complex scaling rules, including a hardware accelerated FFT
and a hardware accelerated matrix multiplication with three
different knob values.
The scaling rule also need not be a recursive decompo-

sition in general. Samoyed is flexible: a scaling rule could
instead invoke a lower-precision (lower-energy) peripheral
routine determined by the knob value.

Supporting Peripherals in Intermittent Systems with JIT Checkpoints PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

1 atomic<row,col> tp(
 output[row*col] int* out,
 input[row*col] int* in,
 int row, int col){
2 memcpy(TR_IN,in,row*col*2);
3 TR_RUN_HW(row, col);
4 while(!TR_DONE);
5 memcpy(out,TR_OUT,row*col*2);
6 scaling rule{
7 if (row > col){
8 tp(out,in,row/2,col);
9 tp(out+row/2,in+(row/2)*NUM_COLS,row/2,col);
10 }else{
11 tp(out,in,row,col/2);
12 tp(out+(col/2)*NUM_ROWS,in+col/2,row,col);}}}

original code

divide row dimension

divide column dimension

column size of the original matrix

row size of the original matrix

Figure 8. A more complex scalable atomic region. A
matrix transpose that dynamically scales the larger of its
row or column dimensions.

3.3 Energy Profiler
Samoyed uses its energy profiler to directly measure the
energy consumed by each atomic function to estimate the
viability of the function on a given platform. The compiler
generates a measurement binary that includes the original
device initialization code (e.g., clock setup), and repeatedly
invokes the atomic function with its smallest possible knob
variable and a randomized input. The binary checks whether
the most aggressively scaled function can run on a given plat-
form. The generated measurement binary is programmed
onto a real energy-harvesting platform, with the measure-
ment hardware attached.
The measurement device is a custom hardware circuit

similar in design to EDB [14]. The device manages a power
source and a control signal to the target device. The hard-
ware repeatedly (1) fills the device energy capacitor, (2) de-
taches the power source, and (3) signals the device to run
the instrumented measurement binary. The signaled device
repeatedly executes the atomic function until the energy is
depleted and sends the resulting number of successful execu-
tion back to the measurement hardware. Aggregating across
multiple runs, the programmer can look at the statistics to
assess the viability of the function on a given platform. If
the system cannot run a single instance of the function with
a fully-charged capacitor, the programmer must increase
the capacitor size or consider a peripheral with different
energy requirements. If the system runs hundreds of periph-
eral operations in one energy cycle, the peripheral is likely
appropriate for the device.

The purpose of Samoyed’s energy profiler is not to guaran-
tee correctness by proving the absence of non-termination.
Samoyed avoids guarantees because peripheral energy con-
sumption can vary unpredictably with different input, dy-
namic variation in hardware configuration, and the deploy-
ment environment (e.g., temperature, RF). Instead, the pro-
filer is a tool to aid the programmer in understandingwhether
the peripheral’s energy demand exceeds the device’s energy

supply in a particular environment, in a particular software,
hardware, and input configuration.

Samoyed’s profiler is practically useful. Most peripherals
that we studied have low variance in their energy consump-
tion. The profile uniformly reported a high margin between
the peripheral’s measured energy consumption and the de-
vice’s buffer capacity (Section 5.6). This margin is an addi-
tional, empirical assurance that Samoyed will eventually find
a knob assignment that successfully completes.

4 Implementation
We implemented Samoyed’s annotations, compiler, runtime,
and energy profiler targeting the Capybara platform [17].

Samoyedhardware. Capybara [17] includes a TIMSP430FR-
5994 MCU, which has an AES accelerator, a LEA DSP acceler-
ator [61], a Bluetooth Low-energy (BLE) radio controller, and
sensors connected via I2C. We used the MCU’s internal com-
parator [61] to monitor the energy buffering capacitor and
generate an interrupt at 1.8V, a voltage at which the system
reliably checkpoints. According to the MCU’s datasheet, the
energy the comparator uses is 1-7% of the MCU energy [61].

Samoyed runtime library. Samoyed’s runtime library in-
cludes checkpointing, undo-logging, restore, and dynamic
scaling. Checkpointed register data and undo-logs reside in
a pre-allocated FRAM buffer. To undo-log multiple elements
in an array, Samoyed uses an atomic function using DMA.
Registers restore on reboot, eventually restoring the program
counter and redirecting control flow to the checkpointed pro-
gram point. The system also restores any undo-logged data.
The restore routine sets the np flag and the needUpdate flag,
as explained in Section 3.2.3. All the control code inserted by
the compiler is engineered to work correctly (e.g., respecting
atomicity constraints) with arbitrary power failures.

The MSP430FR5994 MCU has both SRAM and FRAM as its
main memory [61]. We wrote a custom linker script forcing
the MCU to use only the FRAM during program execution.

Samoyed compiler. We implemented the Samoyed compiler
as a source-to-source transformation using LibTooling [60],
a Clang-based frontend that analyzes the abstract syntax tree
(AST) and generates instrumented C code that we compile
with GCC. Source-to-source transformation avoids ineffi-
ciencies in the experimental [4] MSP430 LLVM backend in
favor of more efficient GCC backend.

Samoyed energy profiler. We used another MSP430FR5994
MCU that controls a SIP32431 load switch to measure energy,
collecting data via UART.

5 Evaluation
We evaluated Samoyed, showing that it enables correct pe-
ripheral operations, comparing to QuickRecall [32], a prior
system that does not. We show that Samoyed allows the use

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kiwan Maeng and Brandon Lucia

of hardware accelerators that substantially improve perfor-
mance. Comparing computational performance to an alterna-
tive system, we show that Samoyed maintains the extremely
low run time overheads of JIT checkpointing systems. We
also show that the energy profiler simplifies programming.
The evaluation also studies a full-system, room-scale sensing
prototype that senses audio, performs DSP and statistical in-
ference computations, and communicates using BLE. Finally,
we show an analytical study of the applicability of Samoyed
to Eyeriss [10] a recent CNN accelerator.

5.1 Experimental Setup
We evaluated Samoyed using a real, full hardware energy-
harvesting setup. We attached a dipole antenna and a P2110-
EVB Powercast harvester [51] to Capybara [17], harvesting
915 MHz radio waves generated by a ThingMagic Astra-EX
RFID reader positioned 75cm apart and set to a power level of
30dBm. We ran benchmarks repeatedly until the confidence
interval was under 10% of the mean.

5.2 Samoyed Makes Peripheral Accesses Correct
We compared Samoyed’s correctness to a previous JIT check-
pointing system, QuickRecall [32], with the benchmarks
from Section 2.5. We implemented QuickRecall based on the
authors’ description. While some details may differ, Quick-
Recall’s correctness issues arise from the high-level system
design, not its implementation. Table 3 reports data showing
Samoyed avoids all failures that QuickRecall experienced.

Table 3. Correctness of Samoyed vs. QuickRecall. O in-
dicates success, X indicates failure.

category app name Samoyed QuickRecall [32]
Basic Sleep O X

Sensor
Temp 5 O X
Light 5 O X
Mic 5 O X

HW Accel.

DMA O X
AES O X
LEA vadd O X
LEA matmult O X
LEA FFT O X
LEA conv O X

Comm. PRINTF O X
BLE TX O X

Mixed
Temp BLE O X
Light BLE O X
Mic BLE O X

We also empirically observed that peripheral failures are
not unique to JIT checkpointing. Many recent non-JIT check-
pointing systems, e.g., Ratchet [65], Alpaca [44], and Chin-
chilla [45], also experienced failures while using certain pe-
ripherals: Ratchet [65] experienced failures similar to Quick-
Recall’s when the compiler inserted checkpoints during re-
gions of code that manipulate peripherals. Ratchet [65], Al-
paca [44], and Chinchilla [45] all failed in protecting the
WAR dependences introduced by peripherals, corrupting
memory (mainly because their compilers are unaware of the

DMA
LEA vadd

LEA vadd (in-place)

LEA matmult

LEA matmult (in
-place)

LEA FFT

LEA FFT (in-place)
LEA conv

LEA conv (in-place) AES

AES (in-place)

GEOMEAN
0.0

2.5

5.0

7.5

10.0

Ru
n

tim
e

(n
or

m
. b

y
HW

) 122.9
40.6

HW
SW

Figure 9. Comparing accelerators vs. software.

peripheral manipulations). We do not discuss the failure of
these systems in detail, as each is highly system-specific.

5.3 Samoyed Enables Hardware-Acceleration
Unlike prior JIT checkpointing systems, Samoyed enables the
use of extremely efficient architectural accelerators that sub-
stantially improve performance. To emphasize the benefit,
we compared six programs written to use a hardware acceler-
ator with a behaviorally identical software implementation.
DMA copies 50,000 memory words. LEA vadd adds two
600-entry vectors using TI’s on-chip LEA DSP accelerator.
LEAmatmultmultiplies two 16-by-16 fixed-point matrices.
LEA FFT computes the fast Fourier transform (FFT) on a
1024-entry array. LEA conv convolves a 16-entry filter with
a 2048-entry input. AES encrypts a 2048-character string
with a 128-bit key, using an on-chip AES accelerator. For each
benchmark except DMA, we ran two different versions, one
with a separate input and output buffer and one that reuses
the input buffer to store the result (labeled “in-place”). All
software implementations replaced the invocation of accel-
erators with software code from official TI libraries [62, 63].
Figure 9 shows that even compared to highly-optimized

vendor libraries, both accelerated versions yield dominant
performance, with speedups up to 122.9x and on average
10.78x. The in-place versions with undo-logging remain
faster than their software counterparts.

5.4 Samoyed has Low Overheads
We compared Samoyed’s performance against Alpaca’s, as
we did in Section 2.3 with QuickRecall. We used the same
benchmarks as in Section 2.3. Figure 10 shows that Samoyed
is faster than Alpaca in all cases, with up to a 13.9x speedup.
Samoyed’s mean speedup over Alpaca is 2.74x with compiler
optimization level -O0 and 4.11x with -O1.
Samoyed is faster than Alpaca for three reasons. First,

Alpaca executes multiple task boundaries (i.e., checkpoints)
per execution period because tasks are often conservatively
defined. Samoyed collects exactly one checkpoint per power
failure. Second, Alpaca uses redo-logging to prevent WAR
dependences from corrupting memory throughout the code.

Supporting Peripherals in Intermittent Systems with JIT Checkpoints PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

O0 O1 O0 O1 O0 O1 O0 O1 O0 O1 O0 O1 O0 O1
(Opt lvl.)

0

2

4

6

Ru
n

tim
e

(n
or

m
. b

y
Sa

m
oy

ed
) 13.9 11.4

Samoyed
Alpaca

CEM CF RSA AR BF BC GEOMEAN

Figure 10. Performance of Samoyed and Alpaca. The
plot shows data for gcc optimization levels -O0 and -O1.

Samoyed
Alpaca

0

2

4

6

Ru
n

tim
e

(n
or

m
al

ize
d)

chkpt
log
trans
app

CEM CF RSA AR BF BC GEOMEAN

Figure 11. Comparing the overheads of Samoyed and
Alpaca. Execution time breakdown for each system com-
piled with -O0. Alpaca’s main overhead is task transitions
(trans) and redo-logging (log). Samoyed’s main overhead is
checkpointing and restoring (chkpt), which is less than 0.01%
on average.

Samoyed only incurs undo-log overhead when an atomic
function with inouts is present. Third, Alpaca’s tasks limit
the scope of compiler optimizations, while Samoyed permits
optimization across all code outside an atomic function.
Figure 11 breaks down each system’s execution time, re-

vealing its major overheads. We measured each time over-
head by toggling a GPIO before and after each type of op-
eration. In addition to application code (app), Alpaca adds
overhead for each task boundary (trans) and for redo-logging
(log). Samoyed’s main overhead is checkpointing and restor-
ing (chkpt). Our benchmarks did not contain any inouts,
incurring no undo-log overhead.
The data make clear why Samoyed is faster than Alpaca.

Relative to application code execution time, Alpaca has 59%
task boundary overhead and a 32% redo-logging overhead.
Samoyed’s checkpoint and restore overhead is a vanishingly
small 0.9% of its application code execution time. The re-
sult shows that Samoyed still preserves the low-overhead
characteristics of JIT checkpointing, while correctly running
the benchmarks for which QuickRecall failed (CEM, AR).
Other recent non-JIT checkpointing systems, Ratchet [65]
and Chinchilla [45], perform similarly to Alpaca for these
benchmarks [45]. While we do not directly compare to those
systems, Samoyed is likely to similarly outperform them.

200 300 436 766
Capacitor size (μF)

102

103

104

Kn
ob

 si
ze

DMA
AES
LEA vadd
LEA conv

Figure 12. Size of a knob for various benchmarks in
different capacitor size.

Sle
ep DMA

LE
A v

ad
d

LE
A m

atm
ult

LE
A F

FT
LE

A c
on

v
AE

S
PR

INTF
BL

E T
X

Te
mp 5

Lig
ht

5
Mic

5
Te

mp B
LE

Lig
ht

BL
E

Mic
BL

E

10−3

10−2

10−1

100

En
er

gy
 U

se
 (n

or
m

al
ize

d) Available Energy

Figure 13. Profiled energy use of each atomic function.

5.5 Samoyed Effectively Scales Atomic Functions
Samoyed effectively scales knob values in atomic functions.
Figure 12 shows how knob values vary with different capaci-
tor sizes. From our seven benchmarks that have a scaling rule
(DMA, AES, LEA vadd, LEA matmult, LEA conv, LEA FFT,
BLE TX), we plot only four because LEA matmult has three
knob values, LEA FFT only fails with a very small capacitor,
and BLE TX requires a very large capacitor. The data show
that all benchmarks dynamically scale a region’s work to
match the available capacitor size. Samoyed’s scaling rules
free the programmer from thinking about the capacitor size
when programming.

5.6 Samoyed’s Energy Profiler is Informative
Figure 13 shows the energy use of each atomic function
for the benchmarks in Table 3 with the smallest knob size,
automatically measured by our energy profiler. The profiler
collected 30 sample executions each and plotted the mean
and the standard deviation. The atomic functions between
DMA and PRINTF on the x-axis use less than 1% of the
available energy, with very little variation. Similarly, Sleep
and the atomic functions between BLE TX and Mic 5 used
around 1–10% of the energy. It is likely that these functions
will safely make progress with an appropriate Samoyed-
selected knob value.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kiwan Maeng and Brandon Lucia

0 20 40 60 80 100 120
Time (s)

idle
faucet ondisposal on

ground truth

Infinite
hang

Cont power
Samoyed
QuickRecall

Figure 14. Data received from the sensor. The classified
state of the kitchen received at the server is plotted in black
(continuously-powered sensor), dark green (Samoyed, har-
vested energy) and red (QuickRecall [32], harvested energy).
The light green box shows the ground truth.

Other benchmarks (Temp BLE through Mic BLE) have
high variation in their energy consumption because their
atomic functions contain statically unpredictable control
flow. In such cases, the programmer may have to manually
reason that the function is safe to deploy.
Although the profiler cannot provide a progress guaran-

tee, its output helps determine whether the atomic function
is likely to fail on the profiled platform, simplifying both
programming and platform design.

5.7 Case Study 1: Intelligent Synthetic Sensor
We demonstrated the practicality of Samoyed, using it to
build a room-scale, end-to-end application prototype: an
energy-harvesting version of the Synthetic Sensor proposed
by Laput, et al [36]. A synthetic sensor uses machine learn-
ing on sensor inputs to classify environmental signals. Our
prototype collects microphone data from a fixed location.
The device uses a pre-trained logistic regression classifier to
detect kitchen events (faucet on, garbage disposal on, quiet)
and sends results to a server via BLE. The application col-
lects a window of 64 microphone samples at 167Hz, converts
them to 16-bit fixed-point, performs a LEA FFT, processes
FFT results, classifies using a LEA matrix multiply, and sends
results over BLE. Sensing, BLE transmission, FFT, and matrix
multiplication were each written as an atomic function.

Figure 14 shows classifications received via BLE from three
system variants. Black points show continuously-powered
sensor, dark green show Samoyed, and red show QuickRe-
call [32], with Samoyed and QuickRecall running on har-
vested energy. The light green box shows the ground truth.
The data show that Samoyed accurately reports events ap-
proximately once every two seconds which is acceptable,
although less frequently than with continuous power. In
contrast, QuickRecall fails to send data after two samples.
Assuming a reporting frequency of two seconds is accept-
able, Samoyed’s prediction rate is 87%, including as errors
prediction error, packet loss, and late packet delivery. This
study shows Samoyed supports end-to-end applications that
can be applied to a real-world context.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Capacitor size (mF)

10

20

30

40

50

in

vo
ca

tio
ns

invocations

100

200

300

400

Ti
m

e
(s

)Time

Figure 15. Estimated Eyeriss behavior on Samoyed. Es-
timated number on invocations of the atomic functions and
the end-to-end execution time is plotted.

5.8 Case Study 2: Deep Neural Network Accelerator
We analytical studied the applicability of Samoyed to Eye-
riss [10], a recent convolutional neural network (CNN) accel-
erator. Eyeriss reports power consumption of 200mW [10],
which is a feasible power level for a burst-mode [17] inter-
mittent system.
Without access to a real Eyeriss chip, we estimated the

behavior of Samoyed for Eyeriss performing a prediction
using AlexNet [35], by borrowing reported measurement
numbers from the Eyeriss paper [11]. We assume that main
memory is FRAM instead of DRAM as in the original de-
sign, and concentrate on the five convolutional layers, which
consume most of the total energy [10]. We use the reported
power and the end-to-end latency number to calculate the
chip energy use. Then, we multiply the DRAM access num-
bers given by the paper [11] with an FRAM access energy of
0.4nJ per byte [53] to get the FRAM access energy. If the sum
of the two exceeds the device’s energy capacity, Samoyed
will have to recursively break the convolution layer down
into multiple smaller convolutions. For each application of
Samoyed’s scaling rule, we add the cost of reconfiguring Ey-
eriss (provided by the paper) including the additional FRAM
access cost. We conservatively estimate the extra FRAM ac-
cess cost due to Samoyed scaling by multiplying the original
FRAM access cost by the number of recursive division. We
measured the charging time for each capacitor size from 3mF
to 18mF in the same setup as in Section 5.1 and used it to
estimate the end-to-end execution time.
Figure 15 plots the estimated number of atomic function

invocations (i.e., the number of sub-divisions) and the esti-
mated execution time. The result suggests that Samoyed’s
atomic function specification and scaling rule facility can be
applicable to Eyeriss. We did not model a software fallback (it
was unnecessary), but recent work [23] proposed a software
CNN implementation that is applicable if Eyeriss exceeds the
device energy budget. Samoyed makes using Eyeriss in an in-
termittent system easier. The scaling rule effectively divides
the entire network computation into many, smaller atomic
functions to run on a given platform, which is not straight-
forward to do manually. The data show that execution time

Supporting Peripherals in Intermittent Systems with JIT Checkpoints PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

decreases as available energy increases because decompos-
ing the peripheral invocation imposes a configuration and
FRAM overhead. With an 18mF capacitor, the end-to-end ex-
ecution time is less than a minute, suggesting that Samoyed
and Eyeriss together make it viable to run AlexNet on an
energy-harvesting device. This study emphasizes Samoyed’s
applicability to modern architectural accelerators, establish-
ing the feasibility of their use in intermittent systems.

6 Related Work
Several prior research relates to Samoyed. We discuss the
most related work on energy-harvesting devices and inter-
mittent computing, idempotent computation, and work on
memory consistency and persistency.

Intermittent and energy-harvesting devices Section 1
covered prior JIT checkpointing systems [5, 6, 32, 33] and
static checkpoint systems relying on a compiler [4, 7, 16, 45,
46, 54, 65], or the programmer [15, 30, 40, 44, 70]. Other ap-
proaches [31, 43] change the microarchitecture to efficiently
provide checkpointing, suffering some problems of software
approaches, and requiring custom silicon.

Concurrently with our work, RESTOP [55] developed sup-
port for automatic reinitialization after power failures of pe-
ripherals using MMIO registers or I2C protocol. RESTOP is a
partial solution for simple peripherals that require only reini-
tialization (e.g., simple sensors), but does not support com-
plex peripherals, like architectural accelerators (e.g., LEA,
AES). RESTOP also does not provide timeliness or work-
load scaling. Mayfly [30] uses an external hardware timer to
avoid timeliness violations. Mayfly is a complementary work
that specifically addresses timeliness violations, but does not
handle other peripheral manipulation issues. NVRF [68] is
an RF chip that saves configurations in non-volatile mem-
ory. NVRF is not a general peripheral solution and requires
custom hardware. UFoP [28] allocates to each peripheral a
capacitor that stores sufficient energy to use that peripheral.
The solution is insufficient when the energy use of the pe-
ripheral varies. In contrast, Samoyed’s scaling rules, energy
profiling, and fallback routines prevents non-termination for
a broad class of peripherals.
Samoyed can be applied to a variety of intermittent plat-

forms [17, 29, 56, 72], and multi-tenant energy-harvesting
systems [2]. Wisent [59] and Stork [1] enable wireless soft-
ware updates for these devices, while Ekho [73] and EDB [14]
help with full-system debugging. Incidental computing [42]
optimizes latency-insensitive code via approximation and
NEOFog [41] models communication between hypothetical
intermittent devices that can directly communicate. Other
prior work targets energy-harvesting devices but does not
support intermittent operation [8, 34, 37, 58].

Idempotent compilation Prior work on idempotent code
compilation [19, 20, 74] uses a compiler to generate idem-
potent code, making the system robust to failures. Idem-
potent compilation also features in other intermittent sys-
tems [44, 45, 65]. Our prototype ensures idempotent execu-
tion for atomic functions by undo-logging inout parameters.

Automatic algorithm tuning Prior work on algorithm
tuning [3, 9, 52, 69] dynamically selects the optimal algorithm
and execution parameters, optimizing performance similarly
to Samoyed’s dynamic knob selection.

Consistency and non-volatile memory Prior work on
transactions [24, 26, 27, 57] bears similarity to Samoyed’s atomic
regions, although targeting concurrency, not intermittence.
Work on non-volatile memory persistency [13, 18, 21, 22, 47–
50, 66, 67, 75] also relate to Samoyed in their purpose, but
differ in their mechanism and in that they target large-scale
parallel systems, not intermittent microcontrollers.

7 Conclusion
This paper presented Samoyed, a Just-In-Time checkpointing
system that can safely and efficiently manipulate peripherals
in programmer-defined atomic functions, leveraging com-
piler support, energy profiling, and a runtime library for safe,
efficient intermittent execution. Samoyed safely executes
code that manipulates peripherals that cause failures in prior
JIT checkpointing systems. Samoyed provides a 10.78x mean
speedup over prior work by enabling the use of architectural
accelerators. Samoyed preserves the performance benefit of
JIT checkpointing systems, with a 4.11x speedup on average
compared to an alternative non-JIT system. Samoyed dynam-
ically scales atomic function work that is too large, profiles
energy consumption, and defaults to a software fallback if
safe use of a peripheral is impossible. Together, these fea-
tures of Samoyed significantly simplify the task of writing
code for an intermittent system that manipulates peripher-
als. Using Samoyed, we built and evaluated an end-to-end
home sensing application that we tested in a deployment,
demonstrating Samoyed’s practicality. We also demonstrated
quantitatively that Samoyed is crucial to the use of emerging
architectural accelerators in intermittent devices.

Acknowledgments
We thank the anonymous reviewers for the valuable feed-
back and we thank Jennifer Sartor for shepherding our work.
We thank Emily Ruppel for the insightful early discussion
on these ideas. This work was supported in part by National
Science Foundation Award #1751029. This work was sup-
ported in part by the CONIX Research Center, one of six
centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. Kiwan Maeng was
partially supported by the Korea Foundation for Advanced
Studies (KFAS).

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kiwan Maeng and Brandon Lucia

References
[1] Henko Aantjes, Amjad Y Majid, Przemyslaw Pawełczak, Jethro Tan,

Aaron Parks, and Joshua R Smith. 2017. Fast downstream to many
(computational) RFIDs. In INFOCOM2017-IEEE Conference on Computer
Communications, IEEE. IEEE, 1–9.

[2] Joshua Adkins, Bradford Campbell, Branden Ghena, Neal Jackson,
Pat Pannuto, and Prabal Dutta. 2016. The Signpost Network: Demo
Abstract. In Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems CD-ROM (SenSys ’16). ACM, New York, NY,
USA, 320–321. https://doi.org/10.1145/2994551.2996542

[3] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks: A Language
and Compiler for Algorithmic Choice. In ACM SIGPLAN Conference on
Programming Language Design and Implementation. Dublin, Ireland.
http://groups.csail.mit.edu/commit/papers/2009/ansel-pldi09.pdf

[4] Sara S Baghsorkhi and Christos Margiolas. 2018. Automating efficient
variable-grained resiliency for low-power IoT systems. In Proceedings
of the 2018 International Symposium on Code Generation and Optimiza-
tion. ACM, 38–49.

[5] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and
Luca Benini. 2016. Hibernus++: a self-calibrating and adaptive sys-
tem for transiently-powered embedded devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35, 12 (2016),
1968–1980.

[6] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-
Hashimi, Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining
computation during intermittent supply for energy-harvesting sys-
tems. IEEE Embedded Systems Letters 7, 1 (2015), 15–18.

[7] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code
instrumentation for transiently-powered embedded sensing. In Pro-
ceedings of the 16th ACM/IEEE International Conference on Information
Processing in Sensor Networks. ACM, 209–219.

[8] Michael Buettner, Ben Greenstein, and David Wetherall. 2011. Dew-
drop: An Energy-aware Runtime for Computational RFID. In Proceed-
ings of the 8th USENIX Conference on Networked Systems Design and
Implementation (NSDI’11). USENIX Association, Berkeley, CA, USA,
197–210.

[9] Simone Campanoni, Glenn Holloway, Gu-YeonWei, and David Brooks.
2015. Helix-up: Relaxing program semantics to unleash parallelization.
In Proceedings of the 13th Annual IEEE/ACM International Symposium
on Code Generation and Optimization. IEEE Computer Society, 235–
245.

[10] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017.
Eyeriss: An energy-efficient reconfigurable accelerator for deep con-
volutional neural networks. IEEE Journal of Solid-State Circuits 52, 1
(2017), 127–138.

[11] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017.
Eyeriss: An energy-efficient reconfigurable accelerator for deep con-
volutional neural networks. IEEE Journal of Solid-State Circuits 52, 1
(2017), 127–138.

[12] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John
Sartori. 2017. Determining application-specific peak power and energy
requirements for ultra-low power processors. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 3–16.

[13] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-generation, Non-
volatile Memories. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS XVI). ACM, New York, NY, USA, 105–118.
https://doi.org/10.1145/1950365.1950380

[14] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample.
2016. An Energy-interference-free Hardware-Software Debugger for
Intermittent Energy-harvesting Systems. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’16). ACM, New York, NY,
USA, 577–589. https://doi.org/10.1145/2872362.2872409

[15] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels
for Reliable Intermittent Programs. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2016). ACM, New York,
NY, USA, 514–530. https://doi.org/10.1145/2983990.2983995

[16] Alexei Colin and Brandon Lucia. 2018. Termination checking and task
decomposition for task-based intermittent programs. In Proceedings
of the 27th International Conference on Compiler Construction. ACM,
116–127.

[17] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfig-
urable Energy Storage Architecture for Energy-harvesting Devices.
In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’18). ACM, New York, NY, USA.

[18] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
through byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. ACM,
133–146.

[19] Marc De Kruijf and Karthikeyan Sankaralingam. 2013. Idempotent
code generation: Implementation, analysis, and evaluation. In Proceed-
ings of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE Computer Society, 1–12.

[20] Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. 2012.
Static Analysis and Compiler Design for Idempotent Processing. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’12). ACM, New York, NY,
USA, 475–486. https://doi.org/10.1145/2254064.2254120

[21] Kshitij Doshi and Peter Varman. 2012. WrAP: Managing byte-
addressable persistent memory. In Memory Archiecture and Organiza-
tion Workshop.(MeAOW).

[22] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems. ACM, 15.

[23] Graham Gobieski, Nathan Beckmann, and Brandon Lucia. 2018. Intelli-
gence Beyond the Edge: Inference on Intermittent Embedded Systems.
arXiv preprint arXiv:1810.07751 (2018).

[24] Lance Hammond, Vicky Wong, Mike Chen, Brian D Carlstrom, John D
Davis, Ben Hertzberg, Manohar K Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Kunle Olukotun. 2004. Transactional memory coher-
ence and consistency. In ACM SIGARCH Computer Architecture News,
Vol. 32. IEEE Computer Society, 102.

[25] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. 2016. EIE: efficient inference engine
on compressed deep neural network. In Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on. IEEE, 243–
254.

[26] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-
lihy. 2005. Composable Memory Transactions. In Proceedings of the
Tenth ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP ’05). ACM, New York, NY, USA, 48–60.
https://doi.org/10.1145/1065944.1065952

[27] Maurice Herlihy and J Eliot B Moss. 1993. Transactional memory:
Architectural support for lock-free synchronization. In Proc. of the
20th Annual International Symposium on Computer Architecture. 289–
300.

https://doi.org/10.1145/2994551.2996542
http://groups.csail.mit.edu/commit/papers/2009/ansel-pldi09.pdf
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/2872362.2872409
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/2254064.2254120
https://doi.org/10.1145/1065944.1065952

Supporting Peripherals in Intermittent Systems with JIT Checkpoints PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

[28] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of
the Coulombs: Federating Energy Storage for Tiny, Intermittently-
Powered Sensors. In Proceedings of the 13th ACM Conference on Em-
bedded Networked Sensor Systems (SenSys ’15). ACM, New York, NY,
USA, 5–16. https://doi.org/10.1145/2809695.2809707

[29] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for
the Batteryless Internet-of-Things. In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems. ACM, 19.

[30] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution
on Intermittently Powered Batteryless Sensors. In Conference on Em-
bedded Networked Sensor Systems (SenSys 2017). ACM, New York, NY,
USA.

[31] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent
Computation. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture. ACM, 228–240.

[32] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014.
QuickRecall: A low overhead HW/SW approach for enabling compu-
tations across power cycles in transiently powered computers. In VLSI
Design and 2014 13th International Conference on Embedded Systems,
2014 27th International Conference on. IEEE, 330–335.

[33] Hrishikesh Jayakumar, Arnab Raha, Jacob R. Stevens, and Vijay
Raghunathan. 2017. Energy-Aware Memory Mapping for Hybrid
FRAM-SRAM MCUs in Intermittently-Powered IoT Devices. ACM
Trans. Embed. Comput. Syst. 16, 3, Article 65 (April 2017), 23 pages.
https://doi.org/10.1145/2983628

[34] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shi-
uan Peh, and Daniel Rubenstein. 2002. Energy-efficient Comput-
ing for Wildlife Tracking: Design Tradeoffs and Early Experiences
with ZebraNet. In Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS X). ACM, New York, NY, USA, 96–107. https:
//doi.org/10.1145/605397.605408

[35] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems. 1097–1105.

[36] Gierad Laput, Yang Zhang, and Chris Harrison. 2017. Synthetic sen-
sors: Towards general-purpose sensing. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. ACM, 3986–3999.

[37] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming
a 64kB Computer Safely and Efficiently. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New
York, NY, USA, 234–251. https://doi.org/10.1145/3132747.3132786

[38] Umer Liqat, Zorana Bankovic, Pedro Lopez-Garcia, and Manuel V
Hermenegildo. 2016. Inferring Energy Bounds Statically by Evolution-
ary Analysis of Basic Blocks. InWorkshop on High Performance Energy
Efficient Embedded Systems (HIP3ES 2016).

[39] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily
Ruppel. 2017. Intermittent Computing: Challenges and Opportuni-
ties. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 71.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[40] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Program-
ming and Execution Model for Intermittent Systems. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2015). ACM, New York, NY, USA, 575–585.
https://doi.org/10.1145/2737924.2737978

[41] Kaisheng Ma, Xueqing Li, Mahmut Taylan Kandemir, Jack Sampson,
Vijaykrishnan Narayanan, Jinyang Li, Tongda Wu, Zhibo Wang, Yong-
pan Liu, and Yuan Xie. 2018. NEOFog: Nonvolatility-Exploiting Op-
timizations for Fog Computing. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 782–796.

[42] Kaisheng Ma, Xueqing Li, Jinyang Li, Yongpan Liu, Yuan Xie, Jack
Sampson, Mahmut Taylan Kandemir, and Vijaykrishnan Narayanan.

2017. Incidental Computing on IoT Nonvolatile Processors. In Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-50 ’17). ACM, New York, NY, USA, 204–218.
https://doi.org/10.1145/3123939.3124533

[43] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,
Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan
Narayanan. 2015. Architecture exploration for ambient energy harvest-
ing nonvolatile processors. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on. IEEE, 526–537.

[44] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: In-
termittent Execution without Checkpoints. In Proceedings of the 2017
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2017). ACM, New
York, NY, USA.

[45] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Check-
pointing for Safe Efficient Intermittent Computing. In OSDI.

[46] Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. 2013.
Idetic: A high-level synthesis approach for enabling long computations
on transiently-powered ASICs. In Pervasive Computing and Communi-
cations (PerCom), 2013 IEEE International Conference on. IEEE, 216–224.

[47] Iulian Moraru, David G Andersen, Michael Kaminsky, Niraj Tolia,
Parthasarathy Ranganathan, and Nathan Binkert. 2013. Consistent,
durable, and safe memory management for byte-addressable non
volatile main memory. In Proceedings of the First ACM SIGOPS Confer-
ence on Timely Results in Operating Systems. ACM, 1.

[48] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system
Persistence. In Proceedings of the Seventeenth International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS XVII). ACM, New York, NY, USA, 401–410.
https://doi.org/10.1145/2150976.2151018

[49] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory
Persistency. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA,
265–276.

[50] Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2015. Mem-
ory Persistency: Semantics for Byte-Addressable Nonvolatile Memory
Technologies. IEEE Micro 35, 3 (2015), 125–131.

[51] Powercast Inc. 2010. Evaluation Board for P2110 Power-
harvester™ Receiver. http://https://datasheet.octopart.com/
P2110-EVB-Powercast-datasheet-15540333.pdf. , 3 pages.

[52] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua,
Manuela M Veloso, Bryan W Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, et al. 2005. SPIRAL: Code generation
for DSP transforms. Proc. IEEE 93, 2 (2005), 232–275.

[53] Masood Qazi, Michael Clinton, Steven Bartling, and Anantha P Chan-
drakasan. 2012. A low-voltage 1 Mb FRAM in 0.13 µmCMOS featuring
time-to-digital sensing for expanded operating margin. IEEE Journal
of Solid State Circuits 47, 1 (2012), 141.

[54] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos:
System Support for Long-running Computation on RFID-scale Devices.
(2011), 159–170. https://doi.org/10.1145/1950365.1950386

[55] Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V Merrett, and
Alex S Weddell. 2018. RESTOP: Retaining External Peripheral State in
Intermittently-Powered Sensor Systems. Sensors 18, 1 (2018), 172.

[56] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V
Mamishev, and Joshua R Smith. 2008. Design of an RFID-based battery-
free programmable sensing platform. IEEE Transactions on Instrumen-
tation and Measurement 57, 11 (2008), 2608–2615.

[57] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing (PODC ’95). ACM, New York, NY, USA, 204–213.
https://doi.org/10.1145/224964.224987

https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/2983628
https://doi.org/10.1145/605397.605408
https://doi.org/10.1145/605397.605408
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/3123939.3124533
https://doi.org/10.1145/2150976.2151018
http://https://datasheet.octopart.com/P2110-EVB-Powercast-datasheet-15540333.pdf
http://https://datasheet.octopart.com/P2110-EVB-Powercast-datasheet-15540333.pdf
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/224964.224987

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kiwan Maeng and Brandon Lucia

[58] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-
nan, Mark D. Corner, and Emery D. Berger. 2007. Eon: A Lan-
guage and Runtime System for Perpetual Systems. In Proceedings
of the 5th International Conference on Embedded Networked Sensor
Systems (SenSys ’07). ACM, New York, NY, USA, 161–174. https:
//doi.org/10.1145/1322263.1322279

[59] Jethro Tan, Przemysław Pawełczak, Aaron Parks, and Joshua R Smith.
2016. Wisent: Robust downstream communication and storage for
computational RFIDs. In INFOCOM 2016-The 35th Annual IEEE Inter-
national Conference on Computer Communications, IEEE. IEEE, 1–9.

[60] The Clang Team. 2018. Clang 7 documentationg: LibTooling. https:
//clang.llvm.org/docs/LibTooling.html.

[61] TI Inc. 2017. MSP430FR59xx Mixed-Signal Microcontrollers (Rev. F).
http://www.ti.com/lit/ds/symlink/msp430fr5994.pdf. , 19 pages.

[62] TI Inc. 2018. Advanced Encryption Standard. http://www.ti.com/tool/
AES-128.

[63] TI Inc. 2018. Digital Signal Processing (DSP) Library for MSP430
Microcontrollers. http://www.ti.com/tool/msp-dsplib.

[64] TI Inc. 2018. Low-Energy Accelerator (LEA) Frequently Asked Ques-
tions (FAQ). http://www.ti.com/lit/an/slaa720/slaa720.pdf. , 8 pages.

[65] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Compu-
tation Without Hardware Support or Programmer Intervention. In
Proceedings of the 12th USENIX Conference on Operating Systems De-
sign and Implementation (OSDI’16). USENIX Association, Berkeley, CA,
USA, 17–32.

[66] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
and Roy H. Campbell. 2011. Consistent and Durable Data Structures
for Non-volatile Byte-addressable Memory. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (FAST’11). USENIX
Association, Berkeley, CA, USA, 5–5.

[67] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XVI). ACM, New York,
NY, USA, 91–104. https://doi.org/10.1145/1950365.1950379

[68] Zhibo Wang, Fang Su, Yiqun Wang, Zewei Li, Xueqing Li, Ryuji
Yoshimura, Takashi Naiki, Takashi Tsuwa, Takahiko Saito, Zhongjun
Wang, et al. 2017. A 130nm FeRAM-based parallel recovery nonvolatile
SoC for normally-OFF operations with 3.9× faster running speed and
11× higher energy efficiency using fast power-on detection and non-
volatile radio controller. In VLSI Circuits, 2017 Symposium on. IEEE,
C336–C337.

[69] R Clinton Whaley and Jack J Dongarra. 1998. Automatically tuned
linear algebra software. In Supercomputing, 1998. SC98. IEEE/ACM
Conference on. IEEE, 38–38.

[70] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemysław Pawełczak, and Josiah Hester. 2018. InK: Reactive
Kernel for Tiny Batteryless Sensors (SenSys ’18).

[71] Zac Manchester. 2015. KickSat. http://zacinaction.github.io/kicksat/.
[72] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu.

2011. Moo: A batteryless computational RFID and sensing platform.
Department of Computer Science, University of Massachusetts Amherst.,
Tech. Rep (2011).

[73] Hong Zhang, Mastooreh Salajegheh, Kevin Fu, and Jacob Sorber. 2011.
Ekho: Bridging the Gap Between Simulation and Reality in Tiny
Energy-harvesting Sensors. In Proceedings of the 4th Workshop on
Power-Aware Computing and Systems (HotPower ’11). ACM, New York,
NY, USA, Article 9, 5 pages. https://doi.org/10.1145/2039252.2039261

[74] Wei Zhang, Marc de Kruijf, Ang Li, Shan Lu, and Karthikeyan Sankar-
alingam. 2013. ConAir: Featherweight Concurrency Bug Recovery via
Single-threaded Idempotent Execution. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’13). ACM, New York, NY, USA,
113–126. https://doi.org/10.1145/2451116.2451129

[75] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P.
Jouppi. 2013. Kiln: Closing the Performance Gap Between Systemswith
and Without Persistence Support. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-46).
ACM, New York, NY, USA, 421–432. https://doi.org/10.1145/2540708.
2540744

https://doi.org/10.1145/1322263.1322279
https://doi.org/10.1145/1322263.1322279
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
http://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
http://www.ti.com/tool/AES-128
http://www.ti.com/tool/AES-128
http://www.ti.com/tool/msp-dsplib
http://www.ti.com/lit/an/slaa720/slaa720.pdf
https://doi.org/10.1145/1950365.1950379
http://zacinaction.github.io/kicksat/
https://doi.org/10.1145/2039252.2039261
https://doi.org/10.1145/2451116.2451129
https://doi.org/10.1145/2540708.2540744
https://doi.org/10.1145/2540708.2540744

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Energy-Harvesting Devices
	2.2 Just-In-Time Checkpointing
	2.3 The Performance Benefit of JIT Checkpointing
	2.4 The Peripheral Problem for JIT Checkpoints
	2.5 How Do Real Peripheral Accesses Fail?

	3 Safe Peripheral Operations with Samoyed
	3.1 Baseline JIT Checkpointing System
	3.2 Samoyed Atomic Functions
	3.3 Energy Profiler

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Samoyed Makes Peripheral Accesses Correct
	5.3 Samoyed Enables Hardware-Acceleration
	5.4 Samoyed has Low Overheads
	5.5 Samoyed Effectively Scales Atomic Functions
	5.6 Samoyed's Energy Profiler is Informative
	5.7 Case Study 1: Intelligent Synthetic Sensor
	5.8 Case Study 2: Deep Neural Network Accelerator

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

