
Adaptive Dynamic Checkpointing for Safe Efficient Intermittent Computing

Kiwan Maeng Brandon Lucia
Carnegie Mellon University

{kmaeng,blucia}@andrew.cmu.edu
http://intermittent.systems

Abstract
Energy-harvesting devices have the potential to be the

foundation of emerging, sensor-rich application domains
where the use of batteries is infeasible, such as in space
and civil infrastructure. Programming on an energy-
harvesting device is difficult because the device operates
only intermittently, as energy is available. Intermittent
operation requires the programmer to reason about en-
ergy to understand data consistency and forward progress
of their program. Energy varies with input and environ-
ment, making intermittent programming difficult. Ex-
isting systems for intermittent execution provide an un-
familiar programming abstraction and fail to adapt to
energy changes forcing a compromise of either perfor-
mance or assurance of forward progress.

This paper presents Chinchilla, a compiler and run-
time system that allows running unmodified C code ef-
ficiently on an energy-harvesting device with little ad-
ditional programmer effort and no additional hardware
support. Chinchilla overprovisions code with check-
points to assure the system makes progress, even with
scarce energy. Chinchilla disables checkpoints dynam-
ically to efficiently adapt to energy conditions. Experi-
ments show that Chinchilla improves programmability,
is performant, and makes it simple to statically check
the absence of non-termination. Comparing to two sys-
tems from prior work, Alpaca and Ratchet, Chinchilla
makes progress when Alpaca cannot, and has 125%
mean speedup against Ratchet.

1 Introduction
The maturation of energy-harvesting technology and

low-power microcontrollers fostered batteryless devices
that operate using energy from their environment.
Energy-harvesting devices operate by collecting and
buffering energy in a capacitor, and only intermittently
executing the software when there is available energy
in the capacitor. During execution, a device computes,
uses volatile and non-volatile (e.g., FRAM [50]) mem-
ory, reads sensors and communicates. Recent work en-
abled intermittent software execution [30]. Some cap-
ture checkpoints [36, 44, 51] automatically at arbitrary
points to make progress despite power failures. Other
work asks the programmer to decompose code into idem-

potent, atomic tasks [12, 31, 35] that attempt to execute
repeatedly until completing uninterrupted.

While successful enablers of intermittent computing,
these prior systems compromise on one or more impor-
tant system design aspects: performance, programmabil-
ity, and avoidance of non-termination. Automatic check-
pointing approaches [36,44,51] make programming sim-
ple, but often incur a high execution time overhead due to
excessive checkpoints. Explicit task models [12, 31, 35]
require the programmer to adhere to the task-based pro-
gramming model, hampering programmability. Check-
pointing and task-based systems also do not provide a
simple way of checking whether the system can en-
counter non-termination. The code between two con-
secutive checkpoints or within a task (we refer to both
as “task execution”) may require more energy to com-
plete than will ever be available in the device’s fixed en-
ergy buffer. When a task’s execution consumes more en-
ergy than hardware can buffer, the task will not execute
to completion, and the system faces non-termination —
repeated attempts to execute a task that will never com-
plete. Even a hard reboot does not recover from non-
termination, because intermittent operation spans power
failures. The only fix is to change the code to use smaller
tasks or add more frequent checkpoints and re-flashing
the code onto the device.

Avoiding non-termination is an important correctness
property in an intermittent system that no prior system
satisfactorily provides. Task-based systems [12, 31, 35]
complicate programming by asking the programmer to
estimate the energy use of code regions and to di-
vide code into arbitrary tasks that execute atomically.
Checkpoint-based systems [36, 44, 51] place checkpoint
at semantically meaningful points in a program, obliv-
ious to energy consumption between checkpoints. En-
ergy consumption may vary with input and the environ-
ment, and static energy modeling [4,7,13] is often impre-
cise and overly conservative. Without a way of reliably
checking a program for non-termination, the burden of
writing performant, correct applications lies entirely on
the programmer in existing intermittent systems.

In this work, we observe that adaptation of check-
point timing based on energy consumption is the key
to achieve the three goals: high performance, accessi-

ble programmability, and a simple static check for the
absence of non-termination. Based on this observation,
we propose Chinchilla, 1 a checkpointing, task-based
runtime system that dynamically adapts the interval be-
tween checkpoints based on direct observations of pro-
gram progress. Chinchilla does not ask the programmer
to specify task boundaries, making programming sim-
ple. Chinchilla statically overprovisions a program with
potential checkpoints and makes it simple to check that
the span between two potential checkpoints will not ex-
ceed the device’s energy capacity. Chinchilla achieves
high performance by dynamically adapting which poten-
tial checkpoints to collect, based on the program’s rate of
progress, which will vary across platforms and inputs.

We implemented a full prototype of Chinchilla in-
cluding compiler support, a runtime system, and a non-
termination checker. We evaluated Chinchilla running
on several real RF-harvesting hardware setups, run-
ning a collection of programs from the literature [19,
35] and comparing to two representative systems from
prior work, Alpaca and Ratchet [35, 51]. We show
that Chinchilla improves programmability, supporting
most of the C language (including libraries) and avoids
re-engineering code for every new platform. Chin-
chilla achieves high performance, with a 2.25x aver-
age speedup compared to Ratchet, the previous state-
of-the-art automatic checkpointing system. Chinchilla
achieves performance parity with the task-based Al-
paca that is faster than Ratchet, but requires substantial
code re-engineering. Additionally, we show that Chin-
chilla makes it simple to check for the absence of non-
termination, providing an assurance that code will run
correctly once deployed.

In summary, Chinchilla’s main features are:

• A substantial performance improvement compared to
state-of-the-art intermittent checkpointing systems.

• Enabling a simple, static check that gives assurance
that a program avoids non-termination.

• A simple programming model that supports most of the
C language.

• A dynamic run-time checkpointing adaptation mech-
anism that accommodates varied inputs and environ-
mental conditions.

2 Background
Energy-harvesting devices extract energy from their

environment and execute software according to the in-
termittent execution model, which presents unique chal-
lenges that are not present under continuous execution.

1Correct, Hardware-agnostic INtermittent CHeckpointing
Instrumentation Layer with Low-overhead Adaptation

2.1 Energy-Harvesting Devices
An energy-harvesting device includes a microcon-

troller (MCU), sensors, volatile and non-volatile mem-
ory, and radios. An energy-harvesting device extracts
energy from its environment, e.g., radio, vibration, or
light, and operates intermittently, only when energy is
available. A device collects energy into a fixed size en-
ergy buffer, usually a capacitor. While the device is in-
active, energy slowly accumulates in the buffer. When
the energy level in the buffer reaches a defined threshold,
the device operates, quickly consuming the buffered en-
ergy. The time to accumulate energy is usually greater
by orders of magnitude than the time to consume the en-
ergy. For example, a WISP with a nearby RF power sup-
ply may charge for a second to support 10 ms of opera-
tion [14, 47]. At a failure, the device loses the contents
of its registers, volatile memory, and peripheral config-
uration, while retaining the contents of its non-volatile
memory (e.g., FRAM [50]).

2.2 Correctness in Intermittent Execution
Software on an energy-harvesting device executes ac-

cording to the intermittent execution model. After a
power failure, control resumes from some prior point and
execution continues instead of terminating. Key chal-
lenges of intermittent execution are: ensuring (1) mem-
ory consistency, and (2) forward progress.

Figure 1 shows the challenges of intermittent execu-
tion. The figure shows a code for a 1-D convolution that
preserves execution progress on each power failure by
collecting a volatile execution context (registers, stack)
on each outer loop iteration (a model similar to Me-
mentos [44]). The out array is allocated in non-volatile
memory, initialized to zero. The two executions in the
figure show two problematic intermittent execution be-
haviors. Execution 1 shows that if power fails after up-
dating out[0] but without reaching the checkpoint, con-
trol flow reverts to the top of the inner loop (j = 0) on
reboot. However, the partially updated value of out[0]
persists after the power failure. On reboot, the code up-
dates out[0] again, leading to a memory state that is
impossible in a continuously-powered execution. Exe-
cution 2 shows that if the inner loop’s bound, K, is suf-
ficiently large, the system will exhaust its energy before
reaching the checkpoint, leading to a non-termination.

Several prior strategies successfully ensure memory
consistency on intermittent execution, i.e. they solved
the problem from Execution 1. However, they show lim-
itations in avoiding non-termination (problem from Ex-
ecution 2). We discuss how two popular previous ap-
proaches — explicit task-based models and automatic
checkpointing systems — try to avoid non-termination
on intermittent execution and what their limitations are.

int a[N];
int b[K];
int out[N­K+1];

for(i=0;i<N­K+1;i++)
 for(j=0;j<K;j++)
 out[i]+=
 a[i+j]*b[K­(j+1)];

out[0]

i=0;
j=0;
out[i]+=a[0]*b[K­1];
j++;

checkpoint

power failure

*Checkpoint saves volatile
state. Assume array out is
non-volatile and zero-
initialized.

0

state of out[0]
Attempt 1

out[0]

j=0;
out[i]+=a[0]*b[K­1];
j++;

a[0]*b[K­1]Attempt 2

out[0]
a[0]*b[K­1]
+a[0]*b[K­1]

Problem 1. invalid state Problem 2. program
never completes

Attempt 1

j=0;
out[i]+=a[0]*b[K­1];
j++;

Attempt 2

j=0;
out[i]+=a[0]*b[K­1];
j++;

Attempt N

.
.
.

Program w/ checkpoint Execution 1 Execution 2

i=0;
j=0;
out[i]+=a[0]*b[K­1];
j++;

Figure 1: Challenges of intermittent execution. Code
with volatile state checkpoints may leave memory incon-
sistent (Execution 1) or never terminate (Execution 2).

Explicit Task Models Explicit task-based intermittent
programming and execution models require the pro-
grammer to explicitly specify task boundaries [12, 31,
35]. In these models, it is solely the programmer’s re-
sponsibility to avoid non-termination. These models re-
quire careful programming, because if a task consumes
more energy than the device can buffer, the task will en-
ter non-termination. The programmability cost of speci-
fying task boundaries is high, especially because estimat-
ing the energy use of a task for various inputs is difficult.

Automatic Checkpointing Systems Automatic
checkpointing systems statically insert a checkpoint at
arbitrary program points using compiler and runtime
support [36, 44, 51]. Most of these systems insert a
large number of checkpoints throughout the binary
without considering whether there are sufficiently fre-
quent checkpoints to avoid non-termination. Excessive
frequent checkpoints can have high overhead, and there
is no easy way in such a system to statically check the
presence of non-termination. Additionally, automatic
checkpointing systems do not allow the programmer
to control over the duration and energy consumption
of a task. If task energy demand exceeds the device
energy supply, the programmer has no recourse to fix the
issue, because checkpoint placement is not part of the
programming model. Some propose ad hoc, dynamic
fallbacks that can have high overhead, and are difficult
to characterize [51].

Some recent systems tried to estimate task energy cost
and place checkpoints accordingly instead of heuristi-
cally. However, prior work showed that precisely esti-
mating the energy cost for an arbitrary code is a chal-
lenge even when restricting the model only to the MCU
core instead of the full system [9,29]. Models that rely on
the instruction counting as a proxy for energy [4] or that
use statistical energy models [13] are useful, but limited

if(i<N­K+1)
 gotoTask(t1);
else
 gotoTask(t3);

if (j<K)
 gotoTask(t2);
else{
 i++; j=0;
 gotoTask(t0);}

for(k=0;k<K/2;k++,j++)
 out[i]+=
 a[i+j]*b[K­(j+1)];
gotoTask(t1);

task t0 task t1

task t2

...

(a) Explicit task model

int a{N];
int b[K];
int out[N­K+1];

for(i=0;i<N­K+1;i++)
 for(j=0;j<K;j++)
 out[i]+=
 a[i+j]*b[K­(j+1)];

checkpoint

WAR

(b) Automatic check-
pointing system

Figure 2: Different systems for the convolution. A
convolution code written in (a) explicit task model (Al-
paca [35]), and a code generated by (b) automatic check-
pointing system (Ratchet [51]).

in precision. To make non-termination checking simple,
Chinchilla should have a static check that accounts for
full-system power and does not rely on proxy measure-
ments or statistical models.

2.3 Programmability and Performance in
Existing Models

In addition to non-termination, prior systems may
make programming complex or have poor performance.
Figure 2 shows how prior task and checkpointing sys-
tems may have programmability and performance issues.

Explicit Task Models Programming with explicit
tasks is difficult. Figure 2a shows how the program-
mer could write a 1-D convolution code in a task-based
model [12, 35]. The syntax deviates from plain C and
requires the programmer to decide how many loop itera-
tions fit in a task without exceeding the device’s energy
budget (e.g., task t2 is chosen to hold K/2 loop itera-
tions). A bad choice that puts too many iterations in a
task leads to non-termination. A different bad choice that
puts too few iterations in a task sacrifices performance.
Crucially, if the energy buffer or input changes, the pro-
grammer has to re-write the code to make tasks differ-
ently. Recent platforms support a dynamically variable
energy buffer size [14], making the problem more urgent.

Automatic Checkpointing Systems Although auto-
matic checkpoint insertion to the binary incurs low to no
additional programming effort, an excess of checkpoints
may lead to high execution time overhead. As shown
in Figure 2b, Ratchet [51], the state-of-the-art automatic
checkpointing system, inserts checkpoint between every
Write-After-Read (WAR) dependence, possibly insert-
ing two checkpoints on each inner loop iteration and one
checkpoint on each outer loop iteration in the example.

If the system’s energy buffer can complete multiple iter-
ations of the loop without a power failure, Ratchet suf-
fers an unnecessarily high overhead. Ratchet cannot se-
lectively skip a checkpoint because checkpointing is re-
quired by Ratchet’s memory consistency model.

2.4 Task Atomicity
An automatic checkpointing system also fails to

provide a mechanism for specifying and enforcing
application-level atomicity constraints on checkpoint
placement. For example, if a program should access two
sensors atomically at the same time, they should not be
interleaved by a checkpoint. If a checkpoint splits the
atomic region, the value collected by the first sensor may
be from before a power interruption, and the value col-
lected from the second sensor access may be from much
later, after the power interruption, resulting in stale data.
Chinchilla allows the programmer to specify such atom-
icity constraints if an application needs them.

3 System Overview
Chinchilla is a software system that uses a novel,

adaptive checkpointing scheme to make software on an
intermittently-operating system execute correctly and ef-
ficiently. Chinchilla statically overprovisions code with
potential checkpoints and dynamically deactivates un-
necessary checkpoints at run time to minimize perfor-
mance overhead. Chinchilla is designed to improve
the programmability and efficiency of intermittent sys-
tems, while avoiding non-termination. Programming is
easy, because Chinchilla inserts checkpoints automati-
cally. Execution is efficient, because Chinchilla’s dy-
namic adaptation mechanism minimizes its checkpoint-
ing and state management overhead. Chinchilla ex-
poses a simple, statically-checkable property to deter-
mine whether a program will behave correctly on a given
platform, allowing Chinchilla to avoid non-termination
and effectively making Chinchilla portable to systems
with a wide range of energy buffering capacities.

Figure 3 provides an overview of Chinchilla’s main
features, which are implemented in an instrumenting
compiler analysis and software runtime system. Chin-
chilla compiler inserts checkpointing instrumentation
that captures registers and part of the non-volatile data.
The compiler also uses static analysis to detect which
protected data must persist across checkpoints and power
failures. Chinchilla’s runtime system implements check-
point and restart, a non-volatile stack to avoid full stack
checkpointing, dynamic support for selectively activat-
ing checkpoints, and undo logging to ensure consistency.

First, we discuss where the compiler inserts check-
points, second we describe what data are checkpointed
and logged, and third, we describe how Chinchilla selec-
tively activates checkpoints to mitigate overheads.

3.1 Placing Checkpoints to Enable
Static Non-Termination Checks

Chinchilla inserts checkpoints into a program that pre-
serve its progress by saving execution context that Chin-
chilla can restore after a power failure. Chinchilla’s
goals in placing checkpoints, are to preserve progress
and avoid non-termination, and to minimize run time
overhead. These goals are in tension. To avoid non-
termination, Chinchilla must insert a checkpoint along
any program path that consumes more energy than the
system can buffer, conservatively checkpointing as fre-
quently as possible to avoid non-termination with an
arbitrarily small energy buffer. To minimize check-
point overheads, Chinchilla should only checkpoint at
the boundaries of a path that consumes more energy
than the device can buffer, ideally checkpointing as in-
frequently as possible. Compounding the problem, mea-
suring the full-system energy consumption of arbitrary
code is challenging and imprecise [13, 29] because path
energy depends on inputs and peripheral state.

Chinchilla escapes the checkpoint placement dilemma
by inserting checkpoints conservatively into the pro-
gram so that the resulting program can be simply as-
sured to avoid non-termination, and selectively disabling
checkpoints that are unnecessary to minimize overhead.
Chinchilla inserts a checkpoint at each boundary of
arbitrarily-defined spans of the program, which we refer
to as checkpoint blocks. A checkpoint block defines the
minimum span of code after which a checkpoint might
occur — Chinchilla inserts checkpoints at the boundaries
of checkpoint blocks, but not inside a block. If no check-
point block consumes more energy than the device can
buffer, then the program will not suffer non-termination.
Given this block energy sufficiency premise, eventually
every checkpoint block will complete, reaching the next
checkpoint, and preserving its progress.

The effectiveness of Chinchilla relies on a well-chosen
definition of a checkpoint block. A well-chosen block
definition is easily identifiable statically, permits fre-
quent block boundaries, allows easily measuring block
energy cost, and yields blocks with low energy variance.
Statically identifying block extents is important for stat-
ically enumerating all possible program control-flow be-
havior, especially in the presence of complex I/O. Block
boundaries must naturally occur frequently enough in a
program, or must be easy to insert arbitrarily frequently
to ensure block energy sufficiency, even with a small en-
ergy buffer. A block’s energy should be easy to mea-
sure and have low variance, which precludes any block
definition that has unbounded loops or input-dependent
control-flow paths with wildly different energy costs.

While many block definitions may fit these require-
ments, Chinchilla uses the basic block as its checkpoint
block definition because it fits the criteria well. Basic

blocks are statically defined, frequently occurring, and
can be arbitrarily subdivided by a compiler as needed to
suit small energy buffers. Basic blocks do not contain
branches precluding loops and input-dependent paths,
which may vary substantially in energy consumption.

Some multi-basic-block regions of code must be
atomic and cannot be spliced by a checkpoint, such as
code that reads, processes, and records values from re-
lated sensors (cf. Section 2.4). The programmer can an-
notate such code as an atomic block, and Chinchilla will
treat it as a single checkpoint block. The programmer
must manually ensure that such an atomic block meets
the criteria of a well-chosen checkpoint block. Annota-
tion of the atomic blocks is also a feature of Chinchilla
that previous compiler-based systems neglected [44, 51].
Checking for Non-Termination. While Chinchilla
compiler itself does not provide a static termination guar-
antee, it makes checking for non-termination simple: if
no block’s energy consumption exceeds the device’s en-
ergy buffer, the program avoids non-termination. A pro-
grammer can check for non-termination by measuring
basic block energy consumption under exhaustive, ran-
domized, or representative inputs. In this work, Chin-
chilla adapts the CleanCut energy-measuring compiler’s
block measurement tool [13] to check block energy, ex-
posing the checker directly to the programmer. After the
compiler instruments each checkpoint block and the pro-
grammer checked that no block’s energy consumption
leads to non-termination using the checker, the program
is safe, but over-provisioned with checkpoints. Sec-
tion 3.3 describes how Chinchilla selectively disables
checkpoints to avoid excessive overheads.
Limitations of Chinchilla’s Assurance of Non-
Termination. Even with Chinchilla’s compiler and
checker, Chinchilla cannot always guarantee the ab-
sence of non-termination due to possible variation in
energy consumption with variation in input and envi-
ronment. Despite this limitation, Chinchilla provides
two major advantages. First, Chinchilla shifts the scope
of reasoning about non-termination from arbitrary inter-
checkpoint code regions to a single basic block. Sin-
gle basic blocks have a lower variance in their en-
ergy consumption, simplifying energy measurement and
non-termination reasoning [13, 29]. Second, Chinchilla
selectively disables unnecessary checkpoints allowing
for conservative, static over-provisioning with check-
points (i.e., on every block). Leveraging these prop-
erties Chinchilla provides improved assurance of non-
termination (although not a guarantee of its absence in
all conditions). Practically, Chinchilla eliminates non-
termination. Our evaluation shows that Chinchilla’s con-
servative over-provisioning with checkpoints leaves a
2,100% margin between the device’s energy capacity and
the highest energy cost of any block; even extreme vari-

Program Execution

Protected Vars NV Stack

Stack Reg File

Checkpoint
Storage

update

Undo
Logger

: Non-volatile

: Volatile

Checkpoint? Checkpoint!
Chkpt block

Figure 3: Overview of Chinchilla.

ation in block energy cost due to inputs or environment
is unlikely to exceed such a large margin and cause non-
termination (Figure 8).

3.2 Checkpointing and Undo Logging
Chinchilla checkpoints execution context to preserve

and uses undo logging to keep selected, protected non-
volatile data consistent across failures.
Checkpointing. Chinchilla checkpoints the execution
context, consisting of just the register file and part of the
non-volatile data, but not the stack or global data, making
the time and energy cost of checkpointing small and pre-
dictable. Chinchilla is unlike prior work that uses a fully
non-volatile stack (e.g., [25, 45, 51]) to afford register-
only checkpointing. Instead, Chinchilla uses an efficient
volatile stack and promotes a subset of variables to reside
in non-volatile memory. Chinchilla only promotes data
that may not be re-initialized after a checkpoint to non-
volatile memory, leaving all other data on the volatile
stack. Chinchilla compiler uses a live-range analysis [3]
to identify stack data to promote. If a variable’s live
range begins after a checkpoint, the variable will be as-
signed before it is read after a power interruption. Such
a variable is safe to leave on the volatile stack without
additional protection. The data which need promotion
but are not visible to the compiler pass (e.g, data gener-
ated by the latter stage of the compiler) is handled by our
non-volatile stack discussed below.
Undo Logging. Chinchilla keeps compiler-selected pro-
tected, non-volatile variables consistent using undo log-
ging. The key problem, as prior work [12, 25, 31, 35, 43,
51] observed, is that if a non-volatile memory access is
involved in a write-after-read (WAR) dependence, then
an update to the variable during an execution attempt be-
fore a power interruption may incorrectly be visible to a
re-executed read after the power interruption.

To prevent code from reading incorrect values, Chin-
chilla instruments each write to a protected variable with

undo logging code. At run time, the undo logging code
saves to a log the value of the protected variable before
the variable’s first write after a checkpoint. Chinchilla
rolls back updates to protected variables before restart-
ing execution after a power interruption using the log.
Section 4.3 describes our undo logging implementation.
Non-Volatile Stack Data. Chinchilla uses a small non-
volatile stack to persist stack data that are not visible
to Chinchilla compiler pass. These data include return
addresses and spilled registers. Compared to the stack,
which may be kilobytes, the non-volatile stack is typ-
ically small (∼10 bytes) and its elements short-lived.
Section 4.2 describes the compiler back-end and runtime
system for the non-volatile stack.

3.3 Selective Checkpointing
Checkpointing on every basic block would have a high

run time cost that is usually unnecessary because a sys-
tem is unlikely to fail on every basic block. Chinchilla
mitigates the cost of its non-termination-avoiding, con-
servative, provisioning of checkpoints by skipping some
checkpoints at execution time.

Chinchilla sets a timer at startup that, upon its expira-
tion, indicates that Chinchilla should collect the next dy-
namically executed checkpoint. The runtime skips any
checkpoint it encounters while the timer is running, i.e.,
before it elapses. The key challenge for Chinchilla is
identifying a timer duration that expires before the de-
vice exhausts its buffered energy (ideally checkpointing
before failing), but does not expire too frequently (ide-
ally checkpointing only just before failing).

Chinchilla binary searches for an ideal timer interval
at runtime. Chinchilla’s search starts by running with a
long timer interval. If power fails before the timer ex-
pires and Chinchilla collects no checkpoint, the interval
is too long; Chinchilla halves the interval and tries again.
Assuming that no block consumes more energy than the
device can buffer, the timer duration eventually decreases
sufficiently to reach a checkpoint.

After finding a sufficiently short interval Chinchilla
tries to avoid excessively frequent checkpointing by op-
portunistically increasing the interval again. Given a new
shorter interval and the old longer interval, Chinchilla in-
creases the interval to a new median interval halfway be-
tween the new and old intervals. Chinchilla increases its
interval to the median interval only if execution continues
past the new median interval and successfully captures a
checkpoint. While non-termination requires immediate
interval adjustment, increasing the interval is less urgent.
Chinchilla allows the user to decide when in the code to
update intervals (e.g., every 100 reboots, each outer loop)
by manually annotating a tuning point. We put a tuning
point on the outermost loop in our benchmarks.

4 Chinchilla Implementation
We implemented a prototype of Chinchilla with four

parts: an instrumenting compiler pass and back-end, a
runtime library, and a block non-termination checker.

4.1 The Chinchilla Compiler
Chinchilla’s compiler transforms C code to use the

Chinchilla runtime for safe intermittent execution. The
compiler performs five transformations on the code.
First, the compiler adds checkpoints at the entry of each
basic block. Second, the compiler uses live variable anal-
ysis to identify variables that need protection. Third,
Chinchilla adds undo logging instrumentation to writes
to protected variables. Fourth, the compiler lays out pro-
tected variables in memory to efficiently support meta-
data. Fifth, Chinchilla re-writes main() to re-initialize
peripherals and roll back the undo logs on reboot.
Checkpoint Instrumentation. The Chinchilla com-
piler inserts checkpoint code between every pair of basic
blocks, except for blocks in explicitly annotated atomic
regions. The checkpoint code checks a flag maintained
by the Chinchilla runtime that indicates whether the
checkpoint interval has elapsed since the last power fail-
ure. When the flag is set, the interval has elapsed and the
checkpoint code captures a checkpoint.
Liveness Analysis and Non-Volatile Promotion. Chin-
chilla’s compiler performs liveness analysis for every
variable used in the program to identify protected vari-
ables. Variables that are not protected do not need undo
logging instrumentation. Chinchilla’s liveness analysis
calculates the span of code over which a variable may be
used without being re-written [3] using a local, context-
insensitive, backward CFG traversal from the variable’s
first use to any definition. Chinchilla leverages LLVM’s
(conservative) alias analysis: an operation that may use a
variable starts a live range; only an operation that must
write to a variable ends its live range. If a variable’s
live range crosses a checkpoint, the variable is protected
and Chinchilla allocates it in non-volatile memory. Chin-
chilla keeps protected data consistent using undo log.
Undo Logging Instrumentation. Chinchilla’s compiler
adds undo logging code at accesses to protected vari-
ables. Chinchilla inserts a call to uLog, which imple-
ments undo logging, before every potential write to a
protected variable that may be the variable’s first write
since a checkpoint. uLog takes the address of the variable
as an argument and logs the variable’s value before the
write executes. Chinchilla uses the log to restore values
after a power interruption. The compiler does not instru-
ment accesses to data that do not change throughout the
program, such as constant pointers to global arrays. The
Chinchilla compiler pre-allocates non-volatile log stor-
age equal in size to the sum of the protected variables’
sizes and separated from the protected data store by a

i<100?

chkpt?

Chkpt

...
uLog(i)
i++

i=0

chkpt?

Chkpt

chkpt?

Chkpt
...

Loop Body

(a) Original tight loop

i<100?

chkpt?

Chkpt

...
i++

i=0
uLog(i)

chkpt?
Chkpt

uLog(i)

chkpt?

...

Loop Body

Chkpt
uLog(i)

Common Path

(b) Optimized tight loop

Figure 4: Tight loop optimization. (a) Original code
and (b) optimized code. In the optimized code, if the sys-
tem follows the common pass (blue), no undo log (uLog)
function is called.

fixed offset for fast lookups. Chinchilla uses undo log-
ging rather than redo logging (e.g., [35]) because undo
logging requires no frequent commit and no instrumen-
tation on read operations. Section 4.3 explains our undo
logging implementation.
Memory Layout. Chinchilla organizes protected vari-
ables into aligned, fixed-size blocks placed in non-
volatile memory with which it associates undo logging
metadata; Section 4.3 explains the metadata. Chin-
chilla uses block metadata, rather than variable- or byte-
metadata to amortize its storage overhead. The compiler
puts variables smaller than a block in the same block, but
disallows a variable to span two blocks. The compiler
aligns a variable larger than a block to a block boundary.
Chinchilla uses 8 byte blocks, which Section 5 empiri-
cally justifies.
Reinitialization. The Chinchilla compiler rewrites the
main function to include peripheral reinitialization and
log restoration code. The compiler inserts code to restore
protected variables from the undo log on reboot. The
compiler also inserts a call to a programmer-provided
init function at the beginning of the main function that
reinitializes peripherals on each reboot. Programmers
can also perform task-specific re-initialization of the pe-
ripherals by setting a non-volatile flag in the task that can
be referred in init.
Optimized Undo Logging in Tight Loops. Chinchilla’s
compiler optionally optimizes tight loops, which are
loops with short bodies that can execute many iterations
without exceeding the device’s energy buffer. The op-
timization eliminates per-write undo logging on some
variables, instead safely performing undo logging when
collecting a checkpoint. Figure 4 shows the optimiza-

1

1

2

3

4

2

3

4

NV Stack Ckpt of NV Stack Native Assembly

r15
ret_addr
r4
r5

r13

main:
 ...
 push.nv r15
 call func
 pop.nv r15
 push.nv r13
 ...
func:
 push.nv ret_addr
 push.nv r4
 push.nv r5
 ...
 checkpoint
 ...
 ...
 pop.nv r5
 pop.nv r4
 pop.nv ret_addr
 ret

Figure 5: Non-volatile stack. The Chinchilla back-end
redirects certain push and pop operation to the non-
volatile stack (push.nv, pop.nv). (1) Some data are
pushed to the non-volatile stack. (2) On a checkpoint,
only the updated part gets checkpointed. (3) If power
fails after non-volatile stack is updated, (4) only the up-
dated part is rolled back.

tion applied to the undo logging of i. The optimization
deletes the undo-logging code in the loop, instead log-
ging (1) in the loop pre-header, and (2) after every check-
point within the loop (Figure 4b). If the loop checkpoints
less than once per iteration (i.e., following Figure 4b’s
blue path), Chinchilla runs the undo logging function
once per checkpoint, rather than once per iteration. If
the loop never checkpoints, the undo logging in the pre-
header ensures correctness and the optimization never
changes program behavior. To avoid optimizing long
loops that may checkpoint many times per iteration and
lose performance, Chinchilla heuristically selects loops
that (1) are inner loops, (2) do not call a function, and (3)
have only few (<6) basic blocks in their body.

The optimization idea is different from the static log
coalescing from the previous work [4], since it is effec-
tively coalescing the logging function only when there is
enough energy to run multiple iterations.

4.2 Lightweight Non-Volatile Stack
After compilation, Chinchilla uses a compiler back-

end transformation to modify compiled code, to redi-
rect stack accesses that need to be protected but were
not visible to Chinchilla’s compiler pass, making them
refer to Chinchilla’s non-volatile stack. These accesses
are inserted by the compiler back-end and include sav-
ing return addresses, saving and loading caller context,
and spilling and reloading registers. Chinchilla must pre-
serve in non-volatile memory the data involved in these
accesses when there is a checkpoint between a write and
a read of such data.

Chinchilla’s back-end replaces these accesses with in-
lined runtime calls that maintain the non-volatile stack.
Chinchilla identifies return address pushes and caller
context saves and loads based on the calling convention.
Chinchilla identifies register spills and reloads using
LLVM IR metadata. We implemented the non-volatile
stack transformation in a script that directly modifies as-
sembly; an alternative implementation might modify the
LLVM back-end (like Ratchet [51]) at additional imple-
mentation effort.

Chinchilla’s non-volatile stack has an explicit top
pointer and a depth pointer that tracks the deepest depth
to which the top was popped since the most recent check-
point. Chinchilla uses these pointers to efficiently keep
the non-volatile stack consistent across failures. Chin-
chilla saves with each checkpoint the part of the stack
between the top and the depth: the small fraction of
the non-volatile stack changed since the last reboot.
Clank [25] used a similar differential stack scheme, al-
beit with architecture support. Figure 5 illustrates the
operation of the non-volatile stack management.

4.3 Chinchilla Runtime Library
The Chinchilla runtime library implements adaptive

checkpoint collection and restore, undo logging, and
non-volatile stack management.
Implementation of uLog. Chinchilla’s uLog function
implements undo logging for protected variables. uLog

takes the address of the variable being accessed as its
argument. uLog first defensively checks to ensure that
it only does undo logging for memory addresses in the
range of protected variables, simply returning otherwise.
This is necessary because the compiler conservatively in-
serts undo logging before writes that may write to pro-
tected variables. Chinchilla compiler omits inserting
such defensive check if the accessed data is statically
known to be protected.

Chinchilla explicitly tracks whether an access to a
variable is its first write since the last checkpoint using
an efficient, block-based versioning scheme. Recall that
Chinchilla divides memory into blocks of fixed size (Sec-
tion 4.1). Each block has a one-byte version counter
associated with it to track the first write to the block.
Chinchilla maintains a global version counter that incre-
ments at each collected checkpoint, and at each power
interruption. Chinchilla writes the value of the global
version counter into a block’s version counter each time
uLog backs up the block (i.e., when a variable contained
by the block is written for the first time since a check-
point.) Chinchilla checks whether a block is in the undo
log since the most recent checkpoint by comparing the
global version counter to the block’s version counter. If
a block’s version counter is less than the global version
counter, the block must be copied to the undo log. Chin-

Figure 6: Undo logging. Chinchilla (1) checks the meta-
data and (2) backs up the data before overwriting, (3)
updates metadata and the undo log index.

chilla clears all blocks’ versions when the global version
overflows. Figure 6 illustrates how Chinchilla uses ver-
sions for undo logging.

When uLog determines that an access is the first write
to a variable in a block since the most recent checkpoint,
Chinchilla must copy the variable’s block to the undo
log, which allows restoring the variable’s value after a
power interruption. A block’s undo log location is a fixed
offset away from the block; finding the undo log block
requires adding the address and offset.

Chinchilla uses an undo log index to record backed-
up blocks. The index makes it efficient to restore val-
ues from the undo log after a power failure, by iterating
over the list of index only, not all log storage. Our im-
plementation uses a space-inefficient fixed size index of
1000 entries, although a perfect index with one entry per
block of protected variables is also possible. If the fixed-
size index were to overflow, it should have the same ef-
fect as power failure has; Chinchilla will restart from a
checkpoint and subsequently checkpoint more frequently
to avoid a second overflow. Chinchilla ensures frequent
checkpoints by decreasing its checkpoint timer, which
we describe next.
Implementation of Checkpointing. Chinchilla’s run-
time system implements checkpoint collection and
restoration. At a checkpoint, the system backs up the
register file, saves the updated part of the non-volatile
stack, and clears the undo log index. Chinchilla backs
up the register file by saving the contents of registers to
a fixed memory region. Chinchilla does not checkpoint
the entire non-volatile stack, instead saving the update
since the last checkpoint, which is contained between
the top pointer and depth pointer as discussed in Sec-
tion 4.2. Chinchilla’s checkpoints are double buffered,
and if power fails while capturing a checkpoint, Chin-
chilla reverts to the last successful checkpoint. After a
checkpoint, Chinchilla clears its undo log index by reset-
ting the iterator of the index.

Implementation of Restoring. After a power interrup-
tion, Chinchilla executes a restore procedure to revert
the execution context to the most recent checkpoint be-
fore continuing execution. The procedure calls the init
function, (discussed in Section 4.1) to reconfigure the
system’s peripherals. It then uses its undo log to revert
modified protected variables to their value at the previous
checkpoint and restores the changed portion of the non-
volatile stack since the previous checkpoint. Finally, the
restore routine restores the contents of the register file,
restoring the program counter and continuing execution.

If power fails during restoration, Chinchilla contin-
ues to try to restore to the same checkpoint after reboot-
ing. Chinchilla keeps its iterator of the undo log in non-
volatile memory and during the continuation of the re-
store procedure Chinchilla can start restoring protected
variables from where it left off in the undo log. Assum-
ing the restore procedure successfully reverts at least one
protected variable from the undo log, the amount of work
in the restore procedure decreases with each attempt. Af-
ter eventually reverting all entries in the undo log, the
only restoration work remaining is to repopulate the reg-
ister file and continue execution.
Timer Adaptation. Chinchilla uses a checkpoint timer
to determine when to checkpoint. Chinchilla maintains
the timer’s interval and configures the timer to count
that interval after a reboot. After the timer expires, the
next checkpoint call executed collects a checkpoint; be-
fore the timer expires, checkpoints do nothing. Chin-
chilla adjusts the timer’s interval during execution to
avoid checkpointing too frequently or infrequently. If
the interval is too long, power repeatedly fails before
the timer expires each time Chinchilla reboots from the
last checkpoint. On observing many consecutive fail-
ures with no progress, Chinchilla makes a large decre-
ment to its checkpoint timer interval by halving its inter-
val. If the checkpoint timer interval is very close to the
device’s operating period, power may occasionally fail
before collecting a checkpoint. On observing a failure
before reaching a checkpoint followed by a successfully
collected checkpoint (i.e., non-repeated failures), the de-
vice makes a small decrement to its interval of half the
amount of its last change (i.e., small or large).

If the timer interval is very short, Chinchilla may col-
lect checkpoints too frequently. Chinchilla avoids this
overhead in two ways. If the checkpoint timer expires
twice without a power failure, Chinchilla makes a large
increment by doubling the timer’s interval. Chinchilla in-
creases its checkpoint timer interval using a second opti-
mization timer with an interval longer than the check-
point timer by half the last change in the checkpoint
timer’s interval. If the optimization timer expires with-
out a power failure and takes a checkpoint, Chinchilla
makes a small increment to the checkpoint timer interval

by assigning the value of the optimization timer interval,
and again set the optimization timer interval longer by
half the last change in the checkpoint timer’s interval.

We implemented both the checkpoint timer and the op-
timization timer using a single hardware timer that counts
up with two separate handlers. Chinchilla only keeps one
context-insensitive checkpoint timer interval, assuming
the time from boot to power failure is roughly constant
regardless of which code is executing. Maintaining dif-
ferent timer intervals may provide a benefit for a system
that varies significantly in its operating power (e.g., due
to peripheral activity).

4.4 Non-Termination Checker
Our Chinchilla implementation places checkpoints on

every basic block, making it simple to statically measure
block energy consumption with high precision and en-
sure the absence of non-termination for a given device’s
energy buffer. We implemented an energy checker based
on CleanCut [13], that measured block energy and com-
pares to device energy automatically.

The checker extracts code between checkpoints from
the program’s assembly code and generates a measure-
ment binary containing initialization code and the ex-
tracted code only. Memory accesses using an unknown
reference are redirected to a known location, avoiding
referencing invalid memory space as in CleanCut [13].
The checker inserts code that measures energy (i.e., ca-
pacitor voltage) at the start and end of the extracted code
using EDB [11]. The checker applies this measurement
procedure to every basic block in a program and repeat-
edly executes it multiple times to compensate for mea-
surement noise. If none uses energy that exceeds the de-
vice’s capacitor energy, the program is unlikely to expe-
rience non-termination.

If the checker reveals that a basic block uses more
than the capacitor’s energy, the block should be subdi-
vided into multiple blocks by the compiler or the pro-
grammer. A subdivision is not often necessary: a typical
device [47] can run thousands or tens of thousands of
instructions before exhausting buffered energy, avoiding
non-termination — since our checkpoint blocks are usu-
ally small, none of our experiments required subdivision
(Section 5.4).

5 Evaluation
We evaluated Chinchilla on real hardware, the

WISP5 [47] energy harvesting platform equipped with
a TI MSP430FR5969 processor. We wirelessly pow-
ered the platform using RF energy from the ThingMagic
Astra-EX RFID reader at various power levels, placed
20cm apart. We experimented with two WISP hardware
configurations: a stock WISP5 (WISP), with the stan-
dard 47µF capacitor, and a physically modified WISP5

(WISP-tiny) on which we replaced the standard capacitor
with a much smaller 10µF capacitor.

We compared to three previous systems, Alpaca [35],
which is the most recent task-based intermittent pro-
gramming model, Chain [12], another task-based pro-
gramming model, and Ratchet [51], a compiler-
automated approach. Alpaca is a task-based program-
ming and execution model that asks the programmer to
write a program as a collection of tasks, complicating
programming but leading to high performance by elim-
inating some inefficiencies of automatic checkpointing
systems. Alpaca’s tasks have a fixed size and may exceed
the device’s energy buffer, leading to non-termination
and limiting portability. Chain is similar to Alpaca, al-
though with a more complex, channel-based memory
model. Ratchet inserts checkpoints automatically while
asking nothing of the programmer, but sacrificing per-
formance for this programming simplicity. Ratchet also
provides no easy way to check that an inter-checkpoint
region will not exceed the device’s energy buffer, risk-
ing non-termination. Our comparative evaluation shows
that Chinchilla’s adaptive checkpointing approach is “the
best of both worlds,” with programmability similar to
Ratchet and performance comparable to Alpaca. More-
over, Chinchilla’s simple block energy checking pro-
cedure allows deploying code with confidence that no
block exceeds the device energy buffer, a unique feature
that neither Alpaca nor Ratchet provides.

We used the released versions of Alpaca and Chain,
directly from the authors. In correspondence with its
authors, we ported Ratchet to MSP430 because Ratchet
originally targeted ARM only [51]. Our port omits some
ARM-specific back-end optimizations from Ratchet, re-
sulting in possibly around 1.6x slowdown on average for
our port according to the original work [51].

5.1 Application Benchmarks
We evaluated Chinchilla using all six benchmarks

from the Alpaca paper, ported to run on all systems in our
setup [35]. The benchmarks are Cold-chain Equipment
Monitoring (CEM), Cuckoo Filter (CF), RSA encryption
(RSA), Activity Recognition (AR), Bitcount (BC), and
Blowfish encryption (BF). For Alpaca, we directly used
the benchmarks written by the authors.

CEM reads temperature sensor values and LZW-
compresses them. For repeatability, we emulated the
sensor with pseudo-random numbers. We used a 512-
entry dictionary and a 64-byte compressed block size.
CF stores and reads an input data stream using a cuckoo
filter with 128 entries. RSA encrypts an eleven character
string using RSA with a 64-bit key. AR computes the
mean and standard deviation of a window of accelerom-
eter readings to train a nearest neighbor model to detect
a shaking movement. We used a window size of three

17.25
22.25 30

17.25
22.25 30

17.25
22.25 30

17.25
22.25 30

17.25
22.25 30

17.25
22.25 30

17.25
22.25 30(dBm)0

1

2

3

4

Ru
n

tim
e

(n
or

m
. b

y
Ch

in
ch

illa
) 6.2 5.1 4.7 4.4

Chinchilla
Alpaca
Ratchet

CEM CF RSA AR BF BC GEOMEAN

Figure 7: Run time in different power conditions.

and read 128 samples from each class (shaking or sta-
tionary) in the training phase. BF encrypts a given string
of length 13 using blowfish encryption. BC counts the
number of one bits in a bitstream. For every result pre-
sented, we executed the experiment repeatedly, at most
more than 200 times if necessary, until the confidence
interval converged into less than 10% of the result.

5.2 Chinchilla is Efficient
Chinchilla ensures a program runs with reasonable

overheads in a variety of different wireless power condi-
tions, outperforming state-of-the-art task-based and au-
tomatic checkpointing systems in many cases. We mea-
sured run time with RF power at 17.25dBm, 22.25dBm,
and 30dBm. Figure 7 shows the results.

Chinchilla’s run time is faster than the previous
programmability-oriented system, Ratchet, in all bench-
marks except for CEM, showing an average speedup
around 2.25x. Even when compared to the performance-
oriented Alpaca, Chinchilla shows near-parity perfor-
mance, with 2% speedup on average. The plot omits data
comparing to Chain for brevity; Chinchilla consistently
out-performed Chain, with 2.98x average speedup. The
main performance benefit of Chinchilla comes from its
ability to disable checkpoints, which will be further dis-
cussed in Section 5.4.

5.3 Chinchilla is Effectively Portable
Figure 8 shows the energy use of each basic block of

Chinchilla in different benchmarks with standard devi-
ation, measured with our checker. We compare block
energy to both WISP and the WISP-tiny, shown in the
plot as WISP and tiny. The result from the checker
shows that all the benchmarks can run reliably on both
platforms, with ample headroom of 2100% (WISP) and
375% (tiny). Thanks to Chinchilla’s adaptive check-
pointing scheme, this apparent overprovisioning does not
impede high performance.

We measured Chinchilla’s performance and ability to
make progress with different energy buffer sizes (WISP,

Min Av
g

Max Min Av
g

Max Min Av
g

Max Min Av
g

Max Min Av
g

Max Min Av
g

Max

10−1

100

101
En

er
gy

 U
se

 P
er

 B
lo

ck
 (u

J) Available Energy (WISP)

Available Energy (tiny)

CEM CF RSA AR BF BC

Figure 8: Energy use of Chinchilla’s basic block. En-
ergy held in WISP (47µF) and tiny (10µF) is also shown.

WISP tiny
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ru
n

tim
e

(n
or

m
. b

y
Ch

in
ch

illa
)

X X X X X

6.2 4.4

Chinchilla
Alpaca
Ratchet

CEM
CF(128)

CF(512)
RSA(64)

RSA(256)
AR(3)

AR(30) BF BC

GEOMEAN

Figure 9: Execution time in different capacitor size.
Ran on WISP (47µF) and tiny (10µF). A red X indicates
the system failed to complete.

tiny), and with varied input sizes. We built variants of CF,
RSA, and AR with larger inputs that scale execution time
due to an input dependent loop. We increased CF’s filter
size to 512. We increased RSA’s key size to 256. We
increased AR’s input window size to 30. We performed
all tests at 17.25dBm.

The data in Figure 9 show that Chinchilla efficiently
operates across a wide range of energy configurations,
while Alpaca fails to complete in 4 out of 9 cases
(CF(512), RSA(256), AR(30), BF) using WISP-tiny.

Ratchet’s lack of adaptability makes it slower than
Chinchilla across many inputs and energy buffers. Ad-
ditionally, Ratchet inserts many checkpoints in these ap-
plications and never faces non-termination in these data.
However, there is no simple way to check that for a dif-
ferent input or hardware configuration Ratchet will avoid
non-termination.

5.4 Chinchilla Selectively Checkpoints
We evaluated Chinchilla’s ability to adaptively check-

point only when necessary. We ran complete trials of
each application repeatedly and dynamically counted the
number of collected checkpoints (Chinchilla, Ratchet) or
task transition (Alpaca) and we refer to both as “check-
point” for brevity.

0 20 40 60 80 100
Portion of Run Time (%)

BC
BF
AR

RSA
CF

CEM
app ulog NV skip chkpt

Figure 10: Overhead breakdown. Time spent for ap-
plication code (app), undo log (ulog), non-volatile stack
management (NV), skipping disabled checkpoint (skip),
and checkpoint and restore (chkpt) is shown.

Table 1 shows the result of the experiment. On av-
erage, Alpaca collected 2,185% more checkpoints than
Chinchilla and Ratchet collected 21,817% more check-
points than Chinchilla. The result implies that neither the
programmer (Alpaca) nor the compiler (Ratchet) places
fixed checkpoints efficiently.

Table 1: Number of checkpoints taken

Chkpt. CEM CF RSA AR BF BC
Chinchilla 30 10 16 26 175 15
Alpaca 1611 452 315 265 1081 710
Ratchet 2319 2478 7643 2911 31881 8907

We characterize the major overheads of Chinchilla in
each app to explain its performance. We measured using
a Saleae Digital Logic Analyzer timing GPIO pulses in-
strumented into code to indicate when different operation
types occur. To allow timing instrumentation, we mea-
sured overhead on continuous power, emulating power
failures using a timer. The major overheads are undo log-
ging (ulog), managing the non-volatile stack (NV), skip-
ping disabled checkpoints (skip), and checkpointing and
restoring the checkpoint (chkpt).

Figure 10 shows that undo logging is Chinchilla’s ma-
jor overhead. In contrast, checkpointing and restoring
is less than 3.5% of run time across benchmarks, illus-
trating that Chinchilla avoids unnecessary checkpoints.
The result shows that Chinchilla can effectively elimi-
nate checkpointing overhead, which is the major source
of performance improvement against Ratchet. How-
ever, the additional cost of undo-logging and non-volatile
stack management for enabling dynamic checkpointing
became the new bottleneck of the system.

5.5 Chinchilla Programming is Simple
Chinchilla makes programming simple by allowing

the programmer to use all of C, except for dynamic
memory allocation, which is uncommon in embedded

code with strict resource constraints. Programming with
Chinchilla is simpler than programming with a task-
based system. We compare the programmability of Chin-
chilla against three task-based systems, Alpaca [35],
Chain [12], and DINO [31].

There are three aspects of Chinchilla that make it eas-
ier to program than task-based models. First, Chin-
chilla allows using plain C with no special keywords,
and Chinchilla’s compiler automatically makes code
intermittence-safe. Second, Chinchilla allows complex
use of pointers, by disambiguating memory references
dynamically during undo logging. In comparison, Chain
and DINO prohibit pointers to non-volatile memory [12,
31] and Alpaca prohibits some uses of pointers [35].
Third, Chinchilla’s block energy checker frees the pro-
grammer from reasoning directly about energy consump-
tion while coding. Chinchilla also eliminates the need to
rewrite code when hardware or input changes.

Table 2 quantifies programming complexity counting
system-specific keywords in our test programs. Chin-
chilla only requires the programmer to place a check-
point timer interval tuning function, which our bench-
marks do at each outer loop iteration. Chinchilla also
allows, but does not require, the programmer to mark
atomic regions and none of our applications called for
any atomic regions. Compared to other systems, Chin-
chilla asks very little of the programmer: Alpaca, Chain,
and DINO require the programmer to declare system-
specific data structures, define tasks, and manually place
boundaries and checkpoints.

Table 2: Summary of programming complexity.

App Chinchilla Alpaca Chain DINO

Keywords

CEM 1 47 122 13
CF 1 48 132 11
RSA 1 67 203 35
AR 1 45 110 8
BC 1 49 106 10
BF 1 42 122 9

Prog. Complexity Similar to C High High Med
Portability No Extra Cost Low Low Med
Pointer Support Always Med Low Low

5.6 Metadata Block Size
As Section 4.1 describes, Chinchilla associates undo

logging metadata with a block of data. A larger block
size has a lower metadata storage overhead, but incurs a
higher run time undo logging cost because the undo log
moves data at block granularity. We measured the stor-
age and run time overhead for different block sizes. We
omit full data due to space constraints, but we experi-
mentally determined that when the metadata overhead is
12.5% or more (i.e., eight-byte blocks), time overhead
is low. Larger blocks had higher run time overhead and
we use eight-byte blocks. We also found that few vari-
ables (1%–4%) could be kept in SRAM and most were

CEM CF RSA AR BF BC GEOMEAN0

1

2

3

4

5

Co
de

 si
ze

 (n
or

m
. b

y
pl

ai
n

C)

plain C
Chinchilla
Alpaca
Ratchet

Figure 11: Compiled code size of different systems.

promoted to non-volatile memory because most lifetimes
spanned a checkpoint.

5.7 Code Size Increase
Chinchilla inserts checkpointing code between every

basic block, increasing code size. Figure 11 shows the
normalized code size, measured by directly inspecting
compiled binaries. Note that while the plain C code is
smallest, it does not run correctly on intermittent energy.

All intermittent computing systems see a code size in-
crease due to instrumentation and libraries. Chinchilla
has a 3.56x code size increase compared to plain C, 1.66x
compared to Alpaca, and 1.86x compared to Ratchet.
The code size increase is the cost Chinchilla pays for
its performance and reliability benefits. While increased
code size may increase instruction cache miss rate, Sec-
tion 5.2 shows that Chinchilla has higher performance
than prior systems regardless of any potential increase.

5.8 Alternate Checkpointing Heuristic
We studied an alternative to Chinchilla’s timer-based

checkpoint disabling heuristic that decides whether to
collect a checkpoint based on whether the checkpoint
was used to restore in the recent past. If execution never
resumes from a checkpoint, the checkpoint is unlikely to
be useful and should be disabled.

We implemented this alternative history-based check-
point disabling heuristic that disables checkpoints that
were collected but not used for a fixed period of the
execution. The system stores a score for each check-
point that indicates its likely usefulness. On power fail-
ure, the system updates a checkpoints’ scores, increment-
ing the score of the checkpoint used for restoration, and
decrementing the scores of checkpoints collected and not
used. Periodically, the system disables checkpoints with
a score below a threshold.

Figure 12 compares the performance of Chinchilla
and Chinchilla reimplemented to use this alternative
heuristic. We observed that the history-based heuris-
tic was sometimes comparable to Chinchilla’s approach,
but suffered performance degradation for some bench-

CEM CF RSA AR BF BC GEOMEAN
0.0

0.5

1.0

1.5

2.0

2.5
Ru

n
tim

e
(n

or
m

. b
y

tim
er

-b
as

ed
)

Timer-based
History-based

Figure 12: Run time of two different heuristics. Run
time of timer-based checkpoint disabling versus history-
based checkpoint disabling.

marks. The heuristic does especially poorly with func-
tions called from multiple different calling contexts be-
cause the score associated with a checkpoint is context-
insensitive. The timer-based heuristic was more consis-
tent and simpler to implement. We ultimately exclude
the history-based heuristic from Chinchilla’s design.

6 Related Work
Various prior work influenced the design of Chin-

chilla. The most related work is on intermittent com-
putation on energy-harvesting devices. Work on main-
taining non-volatile memory consistency and approaches
that leverage undo logging to maintain consistent execu-
tion of the program, such as transactional memory, is re-
lated as well. Our work is also related to the prior work
that tried to estimate energy use of an arbitrary code.
Intermittent Execution Prior work [36, 44, 51] pre-
serves progress with automatically inserted checkpoints
of the execution context. Automatic checkpointing of-
ten insert redundant checkpoints, impeding performance.
Ensuring progress or atomicity with these techniques
is complex because they insert checkpoints arbitrarily.
Some systems estimate code energy cost to place check-
points [4,7,13], but estimating energy in arbitrary code is
difficult and error-prone [13]. Task systems ask the pro-
grammer to place task boundaries [12, 31, 35], requiring
the programmer to form tasks that do not consume too
much energy. Mayfly [23] adds real-time constraints on
I/O processing to a task system. Forcing the programmer
to define tasks complicates programming and offers no
simple way to ensure non-termination. Moreover, these
models preclude some C features. Chinchilla eliminates
programming complexity and allows most of C. Some
systems checkpoint “on demand” [5, 6, 26, 45] by mon-
itoring supply voltage. These avoid unnecessary check-
points, but require extra hardware, and require complex
tuning of a checkpoint trigger threshold; a bad thresh-
old risks failing to checkpoint. Non-volatile processors
(NVP) [34] change the architecture to save state. Inci-

dental computing [33] and NEOFog [32] optimize the
NVP for latency insensitive code and fog computing.
Clank [25] implements undo-logging in microarchitec-
ture. Capybara [14] adds a flexible energy storage ca-
pacitor, meeting varied energy demand. UFoP [21] as-
signs a capacitor for each peripheral, and Flicker [22]
assists rapid prototyping of an energy-harvesting device.
TARDIS and CusTARD [24] keeps time with low power
on an energy-harvesting device. Chinchilla requires no
architecture or hardware support.

Abundant prior work addressed low-energy embed-
ded systems, but not explicitly intermittent execution.
Tock [28] is an OS with multi-tenancy for low-power
systems [2]. Dewdrop [8] supports energy-harvesting,
but not intermittent execution. Eon [48] allows specify-
ing how tasks of different cost should be scheduled as
energy conditions change. ZebraNet [27] used energy-
harvesting devices to track wildlife, but with large bat-
teries and solar panels, not intermittent operation. Other
work addresses deep neural networks on an energy-
harvesting devices [18]. Some work helps develop inter-
mittent code. Wisent [49] and Stork [1] update software
on intermittent hardware. Ekho [54] and EDB [11] helps
with testing on energy-harvesting devices.
Non-Volatile Memory Consistency Prior work on
memory persistency in powered systems support consis-
tency in mixed-volatility memory with access reorder-
ing [41, 42, 55]. Others support consistent, non-volatile
data structure and file systems [10, 15, 16, 17, 39, 40,
52, 53]. Transactions and transactional memory sys-
tems [20, 37, 38, 46] also support consistency and per-
sistence. Chinchilla also supports non-volatile mem-
ory consistency (i.e., persistency), but unlike prior work,
does so for intermittently powered devices. The rate of
failures and constraints on energy and resources faced by
Chinchilla makes adopting these solutions difficult.
Energy Measurement CleanCut [13] estimates energy
cost of arbitrary code, to aid in checkpoint placement.
Other work [4, 7] estimates energy use of code by look-
ing at instruction or cycle count. Both have limitations
in precisely estimating the energy use correctly. Chin-
chilla avoids the problem by confining energy measure-
ment to a basic block. Other works outside the domain
of energy-harvesting also tried estimating energy use of
code by using evolutionary modeling [29] or by the num-
ber of active gates [9]. However, these approaches only
estimate the energy use of a processor core, while Chin-
chilla checker checks the energy of the entire platform.

7 Conclusion
Chinchilla is a fully-automatic, adaptive system that

enables correct intermittent execution without additional
programming complexity. Automatic compilation and
undo logging enables writing unmodified C code. dy-

namic checkpoint adaptation offers portability across
platforms, inputs, and environments without recompila-
tion. Chinchilla brings its benefits with low run time
cost compared to the state of the art, with an average
2% speedup compared to Alpaca, and a 125% speedup
over Ratchet. Chinchilla is the first system to simplify
programmability using adaptive checkpoints, and pro-
vide strong static assurance of progress without the aid
of specialized hardware.

Acknowledgements
Thanks to the anonymous reviewers for the insightful
feedback and to Alexei Colin, Emily Ruppel, and Ad-
wait Dongare for the valuable discussion and feedback
about the work. We are also grateful to Cristiano Giuf-
frida for shepherding our final draft. This work is based
on work supported by National Science Foundation grant
CSR-1526342 and CAREER Award CCF-1751029. Ki-
wan Maeng was supported by a scholarship from the Ko-
rea Foundation for Advanced Studies.

References
[1] AANTJES, H., MAJID, A. Y., PAWEŁCZAK, P., TAN, J.,

PARKS, A., AND SMITH, J. R. Fast downstream to many (com-
putational) rfids. In INFOCOM 2017-IEEE Conference on Com-
puter Communications, IEEE (2017), IEEE, pp. 1–9.

[2] ADKINS, J., CAMPBELL, B., GHENA, B., JACKSON, N., PAN-
NUTO, P., AND DUTTA, P. The signpost network: Demo ab-
stract. In Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems CD-ROM (New York, NY, USA, 2016),
SenSys ’16, ACM, pp. 320–321.

[3] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: prin-
ciples, techniques, and tools, vol. 2. Addison-wesley Reading,
2007.

[4] BAGHSORKHI, S. S., AND MARGIOLAS, C. Automating effi-
cient variable-grained resiliency for low-power iot systems. In
Proceedings of the 2018 International Symposium on Code Gen-
eration and Optimization (2018), ACM, pp. 38–49.

[5] BALSAMO, D., WEDDELL, A. S., DAS, A., ARREOLA, A. R.,
BRUNELLI, D., AL-HASHIMI, B. M., MERRETT, G. V., AND
BENINI, L. Hibernus++: a self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
35, 12 (2016), 1968–1980.

[6] BALSAMO, D., WEDDELL, A. S., MERRETT, G. V., AL-
HASHIMI, B. M., BRUNELLI, D., AND BENINI, L. Hibernus:
Sustaining computation during intermittent supply for energy-
harvesting systems. IEEE Embedded Systems Letters 7, 1 (2015),
15–18.

[7] BHATTI, N. A., AND MOTTOLA, L. Harvos: Efficient code in-
strumentation for transiently-powered embedded sensing. In Pro-
ceedings of the 16th ACM/IEEE International Conference on In-
formation Processing in Sensor Networks (2017), ACM, pp. 209–
219.

[8] BUETTNER, M., GREENSTEIN, B., AND WETHERALL, D.
Dewdrop: An energy-aware runtime for computational rfid. In
Proceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation (Berkeley, CA, USA, 2011),
NSDI’11, USENIX Association, pp. 197–210.

[9] CHERUPALLI, H., DUWE, H., YE, W., KUMAR, R., AND SAR-
TORI, J. Determining application-specific peak power and en-
ergy requirements for ultra-low power processors. In Proceed-
ings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (2017), ACM, pp. 3–16.

[10] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP, L. M.,
GUPTA, R. K., JHALA, R., AND SWANSON, S. Nv-heaps:
Making persistent objects fast and safe with next-generation,
non-volatile memories. In Proceedings of the Sixteenth Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2011),
ASPLOS XVI, ACM, pp. 105–118.

[11] COLIN, A., HARVEY, G., LUCIA, B., AND SAMPLE, A. P. An
energy-interference-free hardware-software debugger for inter-
mittent energy-harvesting systems. In Proceedings of the Twenty-
First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (New York, NY,
USA, 2016), ASPLOS ’16, ACM, pp. 577–589.

[12] COLIN, A., AND LUCIA, B. Chain: Tasks and channels for reli-
able intermittent programs. In Proceedings of the 2016 ACM SIG-
PLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (New York, NY,
USA, 2016), OOPSLA 2016, ACM, pp. 514–530.

[13] COLIN, A., AND LUCIA, B. Termination checking and task de-
composition for task-based intermittent programs. In Proceed-
ings of the 27th International Conference on Compiler Construc-
tion (2018), ACM, pp. 116–127.

[14] COLIN, A., RUPPEL, E., AND LUCIA, B. A reconfigurable en-
ergy storage architecture for energy-harvesting devices. In Pro-
ceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems (New York, NY, USA, 2018), ASPLOS ’18, ACM.

[15] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E.,
LEE, B., BURGER, D., AND COETZEE, D. Better i/o through
byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles
(2009), ACM, pp. 133–146.

[16] DOSHI, K., AND VARMAN, P. Wrap: Managing byte-
addressable persistent memory. In Memory Archiecture and Or-
ganization Workshop.(MeAOW) (2012).

[17] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A., LANTZ,
P., REDDY, D., SANKARAN, R., AND JACKSON, J. System soft-
ware for persistent memory. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems (2014), ACM, p. 15.

[18] GOBIESKI, G., BECKMANN, N., AND LUCIA, B. Intermittent
deep neural network inference.

[19] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. Mibench: A free, com-
mercially representative embedded benchmark suite. In Workload
Characterization, 2001. WWC-4. 2001 IEEE International Work-
shop on (2001), IEEE, pp. 3–14.

[20] HERLIHY, M., AND MOSS, J. E. B. Transactional memory:
Architectural support for lock-free data structures, vol. 21. ACM,
1993.

[21] HESTER, J., SITANAYAH, L., AND SORBER, J. Tragedy of
the coulombs: Federating energy storage for tiny, intermittently-
powered sensors. In Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems (New York, NY, USA,
2015), SenSys ’15, ACM, pp. 5–16.

[22] HESTER, J., AND SORBER, J. Flicker: Rapid prototyping for the
batteryless internet-of-things. In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems (2017), ACM,
p. 19.

[23] HESTER, J., STORER, K., AND SORBER, J. Timely execution on
intermittently powered batteryless sensors. In Conference on Em-
bedded Networked Sensor Systems (New York, NY, USA, 2017),
SenSys 2017, ACM.

[24] HESTER, J., TOBIAS, N., RAHMATI, A., SITANAYAH, L.,
HOLCOMB, D., FU, K., BURLESON, W. P., AND SORBER, J.
Persistent clocks for batteryless sensing devices. ACM Trans.
Embed. Comput. Syst. 15, 4 (Aug. 2016), 77:1–77:28.

[25] HICKS, M. Clank: Architectural support for intermittent compu-
tation. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture (2017), ACM, pp. 228–240.

[26] JAYAKUMAR, H., RAHA, A., STEVENS, J. R., AND RAGHU-
NATHAN, V. Energy-aware memory mapping for hybrid fram-
sram mcus in intermittently-powered iot devices. ACM Trans.
Embed. Comput. Syst. 16, 3 (Apr. 2017), 65:1–65:23.

[27] JUANG, P., OKI, H., WANG, Y., MARTONOSI, M., PEH, L. S.,
AND RUBENSTEIN, D. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with zebranet.
In Proceedings of the 10th International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (New York, NY, USA, 2002), ASPLOS X, ACM, pp. 96–
107.

[28] LEVY, A., CAMPBELL, B., GHENA, B., GIFFIN, D. B., PAN-
NUTO, P., DUTTA, P., AND LEVIS, P. Multiprogramming a 64kb
computer safely and efficiently. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (New York, NY, USA,
2017), SOSP ’17, ACM, pp. 234–251.

[29] LIQAT, U., BANKOVIC, Z., LOPEZ-GARCIA, P., AND
HERMENEGILDO, M. V. Inferring energy bounds statically by
evolutionary analysis of basic blocks. In Workshop on High
Performance Energy Efficient Embedded Systems (HIP3ES 2016)
(2016).

[30] LUCIA, B., BALAJI, V., COLIN, A., MAENG, K., AND RUP-
PEL, E. Intermittent computing: Challenges and opportunities. In
LIPIcs-Leibniz International Proceedings in Informatics (2017),
vol. 71, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[31] LUCIA, B., AND RANSFORD, B. A simpler, safer programming
and execution model for intermittent systems. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2015), PLDI
2015, ACM, pp. 575–585.

[32] MA, K., LI, X., KANDEMIR, M. T., SAMPSON, J.,
NARAYANAN, V., LI, J., WU, T., WANG, Z., LIU, Y., AND
XIE, Y. Neofog: Nonvolatility-exploiting optimizations for
fog computing. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (2018), ACM, pp. 782–796.

[33] MA, K., LI, X., LI, J., LIU, Y., XIE, Y., SAMPSON, J., KAN-
DEMIR, M. T., AND NARAYANAN, V. Incidental computing on
iot nonvolatile processors. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (New
York, NY, USA, 2017), MICRO-50 ’17, ACM, pp. 204–218.

[34] MA, K., ZHENG, Y., LI, S., SWAMINATHAN, K., LI, X., LIU,
Y., SAMPSON, J., XIE, Y., AND NARAYANAN, V. Architecture
exploration for ambient energy harvesting nonvolatile processors.
In High Performance Computer Architecture (HPCA), 2015 IEEE
21st International Symposium on (2015), IEEE, pp. 526–537.

[35] MAENG, K., COLIN, A., AND LUCIA, B. Alpaca: Intermit-
tent execution without checkpoints. In Proceedings of the 2017
ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (New York,
NY, USA, 2017), OOPSLA 2017, ACM.

[36] MIRHOSEINI, A., SONGHORI, E. M., AND KOUSHANFAR, F.
Idetic: A high-level synthesis approach for enabling long com-
putations on transiently-powered asics. In Pervasive Computing
and Communications (PerCom), 2013 IEEE International Con-
ference on (2013), IEEE, pp. 216–224.

[37] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H.,
AND SCHWARZ, P. Aries: a transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using write-
ahead logging. ACM Transactions on Database Systems (TODS)
17, 1 (1992), 94–162.

[38] MOORE, K. E., BOBBA, J., MORAVAN, M. J., HILL, M. D.,
WOOD, D. A., ET AL. Logtm: log-based transactional memory.
In HPCA (2006), vol. 6, pp. 254–265.

[39] MORARU, I., ANDERSEN, D. G., KAMINSKY, M., TOLIA, N.,
RANGANATHAN, P., AND BINKERT, N. Consistent, durable, and
safe memory management for byte-addressable non volatile main
memory. In Proceedings of the First ACM SIGOPS Conference
on Timely Results in Operating Systems (2013), ACM, p. 1.

[40] NARAYANAN, D., AND HODSON, O. Whole-system persistence.
In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2012), ASPLOS XVII, ACM,
pp. 401–410.

[41] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory per-
sistency. In Proceeding of the 41st Annual International Sympo-
sium on Computer Architecuture (Piscataway, NJ, USA, 2014),
ISCA ’14, IEEE Press, pp. 265–276.

[42] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory
persistency: Semantics for byte-addressable nonvolatile memory
technologies. IEEE Micro 35, 3 (2015), 125–131.

[43] RANSFORD, B., AND LUCIA, B. Nonvolatile memory is a bro-
ken time machine. In Proceedings of the Workshop on Mem-
ory Systems Performance and Correctness (New York, NY, USA,
2014), MSPC ’14, ACM, pp. 5:1–5:3.

[44] RANSFORD, B., SORBER, J., AND FU, K. Mementos: System
support for long-running computation on rfid-scale devices. 159–
170.

[45] RANSFORD, B., SORBER, J., AND FU, K. Mementos: Sys-
tem support for long-running computation on rfid-scale devices.
In Proceedings of the Sixteenth International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2011), ASPLOS XVI, ACM,
pp. 159–170.

[46] SAHA, B., ADL-TABATABAI, A.-R., HUDSON, R. L., MINH,
C. C., AND HERTZBERG, B. Mcrt-stm: A high performance
software transactional memory system for a multi-core runtime.
In Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (New York,
NY, USA, 2006), PPoPP ’06, ACM, pp. 187–197.

[47] SAMPLE, A. P., YEAGER, D. J., POWLEDGE, P. S., MAMI-
SHEV, A. V., AND SMITH, J. R. Design of an rfid-based battery-
free programmable sensing platform. IEEE Transactions on In-
strumentation and Measurement 57, 11 (2008), 2608–2615.

[48] SORBER, J., KOSTADINOV, A., GARBER, M., BRENNAN, M.,
CORNER, M. D., AND BERGER, E. D. Eon: A language and
runtime system for perpetual systems. In Proceedings of the 5th
International Conference on Embedded Networked Sensor Sys-
tems (New York, NY, USA, 2007), SenSys ’07, ACM, pp. 161–
174.

[49] TAN, J., PAWEŁCZAK, P., PARKS, A., AND SMITH, J. R.
Wisent: Robust downstream communication and storage for
computational rfids. In INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, IEEE
(2016), IEEE, pp. 1–9.

[50] TI INC. Products for msp430frxx fram. http://www.ti.

com/lsds/ti/microcontrollers-16-bit-32-bit/msp/

ultra-low-power/msp430frxx-fram/products.page,
2017. Accessed: 2017-04-08.

[51] VAN DER WOUDE, J., AND HICKS, M. Intermittent computa-
tion without hardware support or programmer intervention. In
Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation (Berkeley, CA, USA, 2016),
OSDI’16, USENIX Association, pp. 17–32.

[52] VENKATARAMAN, S., TOLIA, N., RANGANATHAN, P., AND
CAMPBELL, R. H. Consistent and durable data structures for
non-volatile byte-addressable memory. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (Berkeley,
CA, USA, 2011), FAST’11, USENIX Association, pp. 5–5.

[53] VOLOS, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Sixteenth
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (New York, NY, USA,
2011), ASPLOS XVI, ACM, pp. 91–104.

[54] ZHANG, H., SALAJEGHEH, M., FU, K., AND SORBER, J.
Ekho: Bridging the gap between simulation and reality in tiny
energy-harvesting sensors. In Proceedings of the 4th Workshop
on Power-Aware Computing and Systems (New York, NY, USA,
2011), HotPower ’11, ACM, pp. 9:1–9:5.

[55] ZHAO, J., LI, S., YOON, D. H., XIE, Y., AND JOUPPI, N. P.
Kiln: Closing the performance gap between systems with and
without persistence support. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (New
York, NY, USA, 2013), MICRO-46, ACM, pp. 421–432.

